已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An emoji feature-incorporated multi-view deep learning for explainable sentiment classification of social media reviews

表情符号 计算机科学 社会化媒体 情绪分析 特征(语言学) 人工智能 自然语言处理 数据科学 语言学 万维网 哲学
作者
Qianwen Xu,Chrisina Jayne,Victor Chang
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:202: 123326-123326 被引量:13
标识
DOI:10.1016/j.techfore.2024.123326
摘要

Sentiment analysis has demonstrated its value in a range of high-stakes domains. From financial markets to supply chain management, logistics, and technology legitimacy assessment, sentiment analysis offers insights into public sentiment, actionable data, and improved decision forecasting. This study contributes to this growing body of research by offering a novel multi-view deep learning approach to sentiment analysis that incorporates non-textual features like emojis. The proposed approach considers both textual and emoji views as distinct views of emotional information for the sentiment classification model, and the results acknowledge their individual and combined contributions to sentiment analysis. Comparative analysis with baseline classifiers reveals that incorporating emoji features significantly enriches sentiment analysis, enhancing the accuracy, F1-score, and execution time of the proposed model. Additionally, this study employs LIME for explainable sentiment analysis to provide insights into the model's decision-making process, enabling high-stakes businesses to understand the factors driving customer sentiment. The present study contributes to the literature on multi-view text classification in the context of social media and provides an innovative analytics method for businesses to extract valuable emotional information from electronic word of mouth (eWOM), which can help them stay ahead of the competition in a rapidly evolving digital landscape. In addition, the findings of this paper have important implications for policy development in digital communication and social media monitoring. Recognizing the importance of emojis in sentiment expression can inform policies by helping them better understand public sentiment and tailor policy solutions that better address the concerns of the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助shella采纳,获得10
2秒前
果粒橙完成签到 ,获得积分10
7秒前
共享精神应助阳阳采纳,获得10
8秒前
9秒前
9秒前
9秒前
科研通AI5应助过时的惜雪采纳,获得10
11秒前
11秒前
12秒前
俊逸安阳完成签到,获得积分20
12秒前
丘比特应助你好好好采纳,获得10
12秒前
夏筱举报烂漫的成风求助涉嫌违规
12秒前
14秒前
CJY完成签到,获得积分10
19秒前
21秒前
21秒前
多巴胺发布了新的文献求助10
22秒前
所所应助hzhang0807采纳,获得10
23秒前
23秒前
可爱的函函应助俊逸安阳采纳,获得10
24秒前
26秒前
陈甸甸完成签到 ,获得积分10
26秒前
Trueman发布了新的文献求助10
27秒前
29秒前
29秒前
璐子发布了新的文献求助10
31秒前
33秒前
33秒前
33秒前
hzhang0807发布了新的文献求助10
34秒前
太阳星辰发布了新的文献求助10
35秒前
36秒前
36秒前
请叫我风吹麦浪应助run采纳,获得10
36秒前
健忘泽洋发布了新的文献求助20
37秒前
情怀应助852采纳,获得10
37秒前
xiaobai发布了新的文献求助10
39秒前
39秒前
研友_Z7XY28发布了新的文献求助10
40秒前
桐桐应助菜菜的脆角采纳,获得10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561692
求助须知:如何正确求助?哪些是违规求助? 3135299
关于积分的说明 9411853
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728433
科研通“疑难数据库(出版商)”最低求助积分说明 716825