Data-driven internal temperature estimation methods for sodium-ion battery using electrochemical impedance spectroscopy

介电谱 电池(电) 电化学 离子 钠离子电池 电阻抗 材料科学 光谱学 分析化学(期刊) 化学 电气工程 工程类 热力学 电极 色谱法 物理 冶金 功率(物理) 有机化学 物理化学 法拉第效率 量子力学
作者
Yupeng Liu,Lijun Yang,Ruijin Liao,Chengyu Hu,Yanlin Xiao,Jianxin Wu,Chunwang He,Yuan Zhang,Siquan Li
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:87: 111426-111426 被引量:5
标识
DOI:10.1016/j.est.2024.111426
摘要

As sodium-ion batteries (SIBs) move towards commercialization, safety monitoring of SIBs has become the next key issue, and how to avoid thermal runaway is one of the toughest challenges. The electrochemical impedance spectroscopy (EIS) method for the internal temperature estimation of lithium-ion batteries has received considerable attention due to its non-invasive detection and high accuracy. However, research on the impedance-temperature characteristics of commercial SIBs remains limited, and EIS methods suitable for estimating the internal temperature of SIBs require further investigation. In this study, four commercial 26,700 SIBs were tested, the EIS results of the batteries in various state-of-charge (SoC) states and at different temperatures were systematically investigated, and a method for estimating the internal temperature of SIBs on the basis of the combination of EIS and machine learning (ML) is proposed. Seven component parameters were extracted as features from the raw EIS data using equivalent circuit model fitting, and four features, which were found to be highly correlated with temperature, were further selected by correlation analysis. The mapping relationship between the extracted features and the internal temperature of the battery was established based on three ML regression models. Results demonstrate that the average estimation error of the multi-layer perceptron models for the internal temperature of the battery with unknown SoC states is only 1.086 °C. This paper fills the gap in the temperature characterization of EIS for SIBs and proposes an effective method for overcoming the cross-coupling of the battery EIS with the SoC and temperature within the framework of mechanical learning to estimate the internal temperature of SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dhfify完成签到,获得积分10
1秒前
CMD完成签到 ,获得积分10
1秒前
Hello应助阿尔法贝塔采纳,获得10
2秒前
地德兴完成签到 ,获得积分10
2秒前
琦琦完成签到,获得积分10
3秒前
酷酷的树叶完成签到 ,获得积分10
3秒前
文心同学完成签到,获得积分0
3秒前
lh完成签到 ,获得积分10
10秒前
whyme完成签到,获得积分10
10秒前
11秒前
不可靠月亮完成签到,获得积分10
13秒前
火星上的雨莲完成签到,获得积分10
16秒前
16秒前
清秀以山完成签到,获得积分10
18秒前
科研疯狂者完成签到,获得积分10
19秒前
可爱丸子完成签到,获得积分10
20秒前
leeson完成签到 ,获得积分10
24秒前
可靠月亮完成签到,获得积分10
32秒前
simon完成签到 ,获得积分10
34秒前
克姑美完成签到 ,获得积分10
34秒前
const完成签到,获得积分10
34秒前
桥豆麻袋完成签到,获得积分10
35秒前
35秒前
土豆晴完成签到 ,获得积分10
35秒前
39秒前
股价发布了新的文献求助10
40秒前
Yan完成签到 ,获得积分10
43秒前
小彬完成签到 ,获得积分10
45秒前
心随风飞应助不要长胖采纳,获得30
46秒前
LJJ完成签到 ,获得积分10
48秒前
冷傲以珊完成签到,获得积分10
48秒前
YamDaamCaa发布了新的文献求助200
50秒前
蓝豆子完成签到 ,获得积分10
50秒前
山复尔尔完成签到 ,获得积分10
51秒前
logolush完成签到 ,获得积分10
52秒前
上官若男应助股价采纳,获得10
52秒前
木康薛完成签到,获得积分10
56秒前
chenkj完成签到,获得积分10
57秒前
ikun完成签到,获得积分10
57秒前
EricSai完成签到,获得积分10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511014
关于积分的说明 11155997
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255