A deeply supervised adaptable neural network for diagnosis and classification of Alzheimer’s severity using multitask feature extraction

人工智能 机器学习 支持向量机 朴素贝叶斯分类器 计算机科学 决策树 模式识别(心理学) 特征提取 深度学习 神经影像学 分类器(UML) 人工神经网络 医学 精神科
作者
Mohsen Ahmadi,Danial Javaheri,Matin Khajavi,Kasra Danesh,Junbeom Hur
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0297996-e0297996 被引量:1
标识
DOI:10.1371/journal.pone.0297996
摘要

Alzheimer’s disease is the most prevalent form of dementia, which is a gradual condition that begins with mild memory loss and progresses to difficulties communicating and responding to the environment. Recent advancements in neuroimaging techniques have resulted in large-scale multimodal neuroimaging data, leading to an increased interest in using deep learning for the early diagnosis and automated classification of Alzheimer’s disease. This study uses machine learning (ML) methods to determine the severity level of Alzheimer’s disease using MRI images, where the dataset consists of four levels of severity. A hybrid of 12 feature extraction methods is used to diagnose Alzheimer’s disease severity, and six traditional machine learning methods are applied, including decision tree, K-nearest neighbor, linear discrimination analysis, Naïve Bayes, support vector machine, and ensemble learning methods. During training, optimization is performed to obtain the best solution for each classifier. Additionally, a CNN model is trained using a machine learning system algorithm to identify specific patterns. The accuracy of the Naïve Bayes, Support Vector Machines, K-nearest neighbor, Linear discrimination classifier, Decision tree, Ensembled learning, and presented CNN architecture are 67.5%, 72.3%, 74.5%, 65.6%, 62.4%, 73.8% and, 95.3%, respectively. Based on the results, the presented CNN approach outperforms other traditional machine learning methods to find Alzheimer severity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lifel发布了新的文献求助10
1秒前
素雅发布了新的文献求助10
3秒前
4秒前
6秒前
8秒前
wwb完成签到,获得积分10
9秒前
一壶古酒应助wanglihong采纳,获得60
10秒前
10秒前
coster发布了新的文献求助10
11秒前
11秒前
玄轩发布了新的文献求助10
12秒前
13秒前
踏实的道消完成签到 ,获得积分10
15秒前
lfl发布了新的文献求助10
16秒前
刘丰发布了新的文献求助10
18秒前
21秒前
我是老大应助coster采纳,获得10
22秒前
fmwang完成签到,获得积分10
24秒前
jianlv发布了新的文献求助10
26秒前
高贵的尔蓝关注了科研通微信公众号
27秒前
27秒前
烟火还是永恒完成签到,获得积分10
29秒前
Charon发布了新的文献求助10
32秒前
35秒前
村霸懒洋洋完成签到,获得积分20
36秒前
arui完成签到,获得积分10
36秒前
ding应助Charon采纳,获得10
38秒前
coster完成签到,获得积分10
39秒前
neilphilosci完成签到 ,获得积分10
41秒前
41秒前
玄轩完成签到,获得积分10
44秒前
caleb完成签到,获得积分10
46秒前
wh雨发布了新的文献求助10
47秒前
gao发布了新的文献求助10
48秒前
所所应助lin采纳,获得10
51秒前
52秒前
52秒前
54秒前
简单幸福发布了新的文献求助10
55秒前
CipherSage应助单纯的爆米花采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655