A deeply supervised adaptable neural network for diagnosis and classification of Alzheimer’s severity using multitask feature extraction

人工智能 机器学习 支持向量机 朴素贝叶斯分类器 计算机科学 决策树 模式识别(心理学) 特征提取 深度学习 神经影像学 分类器(UML) 人工神经网络 医学 精神科
作者
Mohsen Ahmadi,Danial Javaheri,Matin Khajavi,Kasra Danesh,Junbeom Hur
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0297996-e0297996 被引量:1
标识
DOI:10.1371/journal.pone.0297996
摘要

Alzheimer’s disease is the most prevalent form of dementia, which is a gradual condition that begins with mild memory loss and progresses to difficulties communicating and responding to the environment. Recent advancements in neuroimaging techniques have resulted in large-scale multimodal neuroimaging data, leading to an increased interest in using deep learning for the early diagnosis and automated classification of Alzheimer’s disease. This study uses machine learning (ML) methods to determine the severity level of Alzheimer’s disease using MRI images, where the dataset consists of four levels of severity. A hybrid of 12 feature extraction methods is used to diagnose Alzheimer’s disease severity, and six traditional machine learning methods are applied, including decision tree, K-nearest neighbor, linear discrimination analysis, Naïve Bayes, support vector machine, and ensemble learning methods. During training, optimization is performed to obtain the best solution for each classifier. Additionally, a CNN model is trained using a machine learning system algorithm to identify specific patterns. The accuracy of the Naïve Bayes, Support Vector Machines, K-nearest neighbor, Linear discrimination classifier, Decision tree, Ensembled learning, and presented CNN architecture are 67.5%, 72.3%, 74.5%, 65.6%, 62.4%, 73.8% and, 95.3%, respectively. Based on the results, the presented CNN approach outperforms other traditional machine learning methods to find Alzheimer severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维尼发布了新的文献求助10
4秒前
科目三应助xtt采纳,获得10
5秒前
多情鑫鹏发布了新的文献求助10
6秒前
大佬完成签到,获得积分10
6秒前
6秒前
完美世界应助唐唐采纳,获得10
7秒前
7秒前
铁男卡卡罗特完成签到,获得积分10
8秒前
9秒前
大佬发布了新的文献求助10
9秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得30
11秒前
CHENG_2025应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
Linda发布了新的文献求助10
13秒前
早睡早起健康长寿完成签到,获得积分10
14秒前
帅气发布了新的文献求助10
14秒前
未来可期发布了新的文献求助10
14秒前
叹陌发布了新的文献求助30
17秒前
18秒前
FashionBoy应助铁男卡卡罗特采纳,获得10
18秒前
18秒前
FashionBoy应助gc采纳,获得10
19秒前
淀粉肠完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517