亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deeply supervised adaptable neural network for diagnosis and classification of Alzheimer’s severity using multitask feature extraction

人工智能 机器学习 支持向量机 朴素贝叶斯分类器 计算机科学 决策树 模式识别(心理学) 特征提取 深度学习 神经影像学 分类器(UML) 人工神经网络 医学 精神科
作者
Mohsen Ahmadi,Danial Javaheri,Matin Khajavi,Kasra Danesh,Junbeom Hur
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0297996-e0297996 被引量:1
标识
DOI:10.1371/journal.pone.0297996
摘要

Alzheimer’s disease is the most prevalent form of dementia, which is a gradual condition that begins with mild memory loss and progresses to difficulties communicating and responding to the environment. Recent advancements in neuroimaging techniques have resulted in large-scale multimodal neuroimaging data, leading to an increased interest in using deep learning for the early diagnosis and automated classification of Alzheimer’s disease. This study uses machine learning (ML) methods to determine the severity level of Alzheimer’s disease using MRI images, where the dataset consists of four levels of severity. A hybrid of 12 feature extraction methods is used to diagnose Alzheimer’s disease severity, and six traditional machine learning methods are applied, including decision tree, K-nearest neighbor, linear discrimination analysis, Naïve Bayes, support vector machine, and ensemble learning methods. During training, optimization is performed to obtain the best solution for each classifier. Additionally, a CNN model is trained using a machine learning system algorithm to identify specific patterns. The accuracy of the Naïve Bayes, Support Vector Machines, K-nearest neighbor, Linear discrimination classifier, Decision tree, Ensembled learning, and presented CNN architecture are 67.5%, 72.3%, 74.5%, 65.6%, 62.4%, 73.8% and, 95.3%, respectively. Based on the results, the presented CNN approach outperforms other traditional machine learning methods to find Alzheimer severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
34秒前
gszy1975发布了新的文献求助10
44秒前
45秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
CipherSage应助难过的踏歌采纳,获得10
1分钟前
1分钟前
MYYYZ发布了新的文献求助10
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
lixiaorui发布了新的文献求助30
1分钟前
1分钟前
帅气琦发布了新的文献求助10
2分钟前
2分钟前
nchudddd发布了新的文献求助10
2分钟前
领导范儿应助帅气琦采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
欣欣完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助MY采纳,获得30
3分钟前
3分钟前
和风完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254426
求助须知:如何正确求助?哪些是违规求助? 4417336
关于积分的说明 13751271
捐赠科研通 4290010
什么是DOI,文献DOI怎么找? 2353954
邀请新用户注册赠送积分活动 1350565
关于科研通互助平台的介绍 1310718