A deeply supervised adaptable neural network for diagnosis and classification of Alzheimer’s severity using multitask feature extraction

人工智能 机器学习 支持向量机 朴素贝叶斯分类器 计算机科学 决策树 模式识别(心理学) 特征提取 深度学习 神经影像学 分类器(UML) 人工神经网络 医学 精神科
作者
Mohsen Ahmadi,Danial Javaheri,Matin Khajavi,Kasra Danesh,Junbeom Hur
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0297996-e0297996 被引量:1
标识
DOI:10.1371/journal.pone.0297996
摘要

Alzheimer’s disease is the most prevalent form of dementia, which is a gradual condition that begins with mild memory loss and progresses to difficulties communicating and responding to the environment. Recent advancements in neuroimaging techniques have resulted in large-scale multimodal neuroimaging data, leading to an increased interest in using deep learning for the early diagnosis and automated classification of Alzheimer’s disease. This study uses machine learning (ML) methods to determine the severity level of Alzheimer’s disease using MRI images, where the dataset consists of four levels of severity. A hybrid of 12 feature extraction methods is used to diagnose Alzheimer’s disease severity, and six traditional machine learning methods are applied, including decision tree, K-nearest neighbor, linear discrimination analysis, Naïve Bayes, support vector machine, and ensemble learning methods. During training, optimization is performed to obtain the best solution for each classifier. Additionally, a CNN model is trained using a machine learning system algorithm to identify specific patterns. The accuracy of the Naïve Bayes, Support Vector Machines, K-nearest neighbor, Linear discrimination classifier, Decision tree, Ensembled learning, and presented CNN architecture are 67.5%, 72.3%, 74.5%, 65.6%, 62.4%, 73.8% and, 95.3%, respectively. Based on the results, the presented CNN approach outperforms other traditional machine learning methods to find Alzheimer severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜洋洋发布了新的文献求助10
刚刚
NANA完成签到,获得积分10
刚刚
乐乐应助协和_子鱼采纳,获得10
刚刚
淇淇完成签到,获得积分10
1秒前
1秒前
luuuuuing完成签到,获得积分10
1秒前
沉静的迎荷完成签到,获得积分10
2秒前
天天快乐应助BreezyGallery采纳,获得10
3秒前
3秒前
3秒前
FashionBoy应助MailkMonk采纳,获得10
4秒前
clm发布了新的文献求助10
5秒前
逢强必赢完成签到,获得积分10
5秒前
科研通AI2S应助开朗的慕儿采纳,获得10
5秒前
5秒前
蒋若风发布了新的文献求助10
5秒前
三番又六次完成签到 ,获得积分10
6秒前
纷花雨发布了新的文献求助10
6秒前
友好的以旋完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
小赞芽完成签到,获得积分10
7秒前
LUMOS完成签到,获得积分10
7秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
8秒前
8秒前
yuyu完成签到,获得积分10
8秒前
落落发布了新的文献求助10
8秒前
9秒前
爱喝冰可乐完成签到,获得积分20
10秒前
jia完成签到,获得积分10
10秒前
传奇3应助HopeStar采纳,获得10
11秒前
liike发布了新的文献求助10
11秒前
melodyezi完成签到,获得积分20
11秒前
要开心完成签到,获得积分10
11秒前
喜洋洋完成签到,获得积分20
11秒前
12秒前
13秒前
cc完成签到,获得积分20
13秒前
科目三应助芋圆Z.采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759