Live-Donor Kidney Transplant Outcome Prediction (L-TOP) using artificial intelligence

结果(博弈论) 医学 肾移植 肾移植 内科学 数理经济学 数学
作者
Hatem Ali,Mahmoud Mohammed,Miklos Z. Molnar,Tibor Fülöp,B. F. Burke,Sunil Shroff,Arun Shroff,David Briggs,Nithya Krishnan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (12): 2088-2099 被引量:1
标识
DOI:10.1093/ndt/gfae088
摘要

ABSTRACT Background Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the currently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. Methods We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 1 December 2007 and 1 June 2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination [time-dependent concordance index (CTD) and area under the receiver operating characteristic curve (AUC)] and calibration [integrated Brier score (IBS)]. We used decision-curve analysis to assess the potential clinical utility. Results Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68 and 0.68 at 5, 10 and 13 years post-transplant, respectively). CTD reached 0.70, 0.67 and 0.66 at 5, 10 and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55–0.58 only. Decision-curve analysis showed an additional net benefit compared with the LKDPI ‘treat all’ and ‘treat none’ approaches. Conclusion Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction, outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live-donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Dali应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
社会主义接班人完成签到 ,获得积分10
2秒前
ilihe应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
GUKGO发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
SYX发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
3秒前
zik应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Dali应助科研通管家采纳,获得10
3秒前
3秒前
spc68应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066