Live-Donor Kidney Transplant Outcome Prediction (L-TOP) using artificial intelligence

结果(博弈论) 医学 肾移植 肾移植 内科学 数理经济学 数学
作者
Hatem Ali,Mahmoud Mohammed,Miklos Z. Molnar,Tibor Fülöp,B. F. Burke,Sunil Shroff,A. Shroff,David Briggs,Nithya Krishnan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (12): 2088-2099
标识
DOI:10.1093/ndt/gfae088
摘要

ABSTRACT Background Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the currently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. Methods We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 1 December 2007 and 1 June 2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination [time-dependent concordance index (CTD) and area under the receiver operating characteristic curve (AUC)] and calibration [integrated Brier score (IBS)]. We used decision-curve analysis to assess the potential clinical utility. Results Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68 and 0.68 at 5, 10 and 13 years post-transplant, respectively). CTD reached 0.70, 0.67 and 0.66 at 5, 10 and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55–0.58 only. Decision-curve analysis showed an additional net benefit compared with the LKDPI ‘treat all’ and ‘treat none’ approaches. Conclusion Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction, outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live-donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1226完成签到,获得积分10
刚刚
Candice应助悦耳的乐荷采纳,获得10
1秒前
1秒前
1秒前
2秒前
小蘑菇应助lonelypatient采纳,获得10
2秒前
3秒前
Lilllllly发布了新的文献求助30
4秒前
4秒前
在水一方应助tulips采纳,获得10
6秒前
吃手手发布了新的文献求助10
7秒前
萧水白应助123采纳,获得10
7秒前
传奇3应助风中的英采纳,获得20
7秒前
8秒前
8秒前
Fawn完成签到,获得积分10
10秒前
Owen应助Yanz采纳,获得10
10秒前
852应助简单采纳,获得10
11秒前
12秒前
13秒前
16秒前
一一应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
fifteen应助科研通管家采纳,获得10
16秒前
Mario1025应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
一一应助科研通管家采纳,获得10
17秒前
杳鸢应助科研通管家采纳,获得10
17秒前
liang应助科研通管家采纳,获得10
17秒前
HCLonely应助科研通管家采纳,获得10
17秒前
杳鸢应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
Cassie应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
ct应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
汀烟应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228354
求助须知:如何正确求助?哪些是违规求助? 2876112
关于积分的说明 8193906
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333