Live-Donor Kidney Transplant Outcome Prediction (L-TOP) using artificial intelligence

结果(博弈论) 医学 肾移植 肾移植 内科学 数理经济学 数学
作者
Hatem Ali,Mahmoud Mohammed,Miklos Z. Molnar,Tibor Fülöp,B. F. Burke,Sunil Shroff,Arun Shroff,David Briggs,Nithya Krishnan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (12): 2088-2099 被引量:1
标识
DOI:10.1093/ndt/gfae088
摘要

ABSTRACT Background Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the currently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. Methods We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 1 December 2007 and 1 June 2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination [time-dependent concordance index (CTD) and area under the receiver operating characteristic curve (AUC)] and calibration [integrated Brier score (IBS)]. We used decision-curve analysis to assess the potential clinical utility. Results Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68 and 0.68 at 5, 10 and 13 years post-transplant, respectively). CTD reached 0.70, 0.67 and 0.66 at 5, 10 and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55–0.58 only. Decision-curve analysis showed an additional net benefit compared with the LKDPI ‘treat all’ and ‘treat none’ approaches. Conclusion Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction, outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live-donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿甘发布了新的文献求助10
1秒前
abc完成签到,获得积分20
1秒前
niumi190完成签到,获得积分0
2秒前
井盖发完成签到,获得积分10
2秒前
2秒前
小广完成签到,获得积分10
3秒前
儒雅儒雅完成签到,获得积分0
3秒前
4秒前
聪明的破茧完成签到,获得积分10
4秒前
GingerF应助林药师采纳,获得200
5秒前
rid4iuclous2完成签到,获得积分0
6秒前
疯狂的青亦完成签到,获得积分10
6秒前
苏恩发布了新的文献求助10
7秒前
小林不熬夜完成签到,获得积分10
7秒前
abc发布了新的文献求助10
7秒前
8秒前
zyy0910发布了新的文献求助10
9秒前
10秒前
10秒前
我憋不住了完成签到,获得积分10
10秒前
耳机单蹦完成签到,获得积分10
12秒前
12秒前
13秒前
swh完成签到 ,获得积分10
13秒前
浮游应助善良的茗茗采纳,获得10
13秒前
踏实的无敌完成签到,获得积分10
13秒前
清欢渡完成签到,获得积分10
14秒前
耳机单蹦发布了新的文献求助10
14秒前
共享精神应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
17秒前
BareBear应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
zyq发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418767
求助须知:如何正确求助?哪些是违规求助? 4534429
关于积分的说明 14143848
捐赠科研通 4450633
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410483