亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesizing heterogeneous lung lesions for virtual imaging trials

病变 计算机科学 成像体模 人工智能 同种类的 人口 核(代数) 模式识别(心理学) 计算机视觉 放射科 医学 病理 数学 环境卫生 组合数学
作者
Cindy McCabe,Justin Solomon,Paul Segars,Ehsan Abadi,Ehsan Samei
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 54-54 被引量:1
标识
DOI:10.1117/12.3006199
摘要

Virtual imaging trials of malignancies require realistic models of lesions. The purpose of this study was to create hybrid lesion models and associated tool incorporating morphological and textural realism. The developed tool creates a lesion morphology based on input parameters describing its shape and spiculation. Internal heterogeneity is added as 3D clustered lumpy background (CLB), allowing for various sub-classes of lesions including full solid, semi-solid, and ground-glass lesions. To insert a lesion into a full body human model (e.g., XCAT phantom), the edges of the lesion are blended into the surrounding background using a parameterizable Gaussian blurring technique. The developed lesion tool allows users to define lesion sizes either manually or automatically following population distribution of lesion sizes. Similarly, the tool allows users to insert lesions either manually or automatically while avoiding intersections with pulmonary structures. The utility of the developed lesion tool was demonstrated by modeling both homogeneous and heterogeneous lung lesions and inserting them into 5 human models (XCAT). The human models were imaged using a validated CT simulator (DukeSim). Images of heterogeneous lesions were visually comparable to clinical images. The first order and texture radiomics features (58 features) were extracted from all image series and compared using the Pearson correlation. The two lesion generation techniques for full solid lesions (homogeneous vs. heterogeneous) were observed to have a weak correlation (r<0.4) for 35 of 58 features using a soft kernel, and for 43 of 58 features using a sharp kernel—capturing the structural differences between the two models. The lesion tool proved capable of forming different lung lesion sub-classes (full-solid, semi-solid, and ground-glass) through its input parameters to emulate the lesion characteristics of interest for a virtual lesion study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztayx完成签到 ,获得积分10
刚刚
1秒前
科目三应助吃个馍馍采纳,获得10
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
体贴花卷发布了新的文献求助10
7秒前
隐形曼青应助光轮2000采纳,获得10
10秒前
龙腾岁月完成签到 ,获得积分10
12秒前
Mei完成签到,获得积分10
19秒前
俭朴爆米花完成签到 ,获得积分10
28秒前
严冰蝶完成签到 ,获得积分10
41秒前
49秒前
可爱的函函应助海咲umi采纳,获得10
49秒前
光轮2000发布了新的文献求助10
52秒前
53秒前
karstbing发布了新的文献求助10
56秒前
58秒前
NexusExplorer应助光轮2000采纳,获得10
1分钟前
大模型应助ABAB采纳,获得10
1分钟前
霸气雪珍完成签到,获得积分10
1分钟前
明亮紫易完成签到,获得积分10
1分钟前
淡然葶完成签到 ,获得积分10
1分钟前
赘婿应助酒酒采纳,获得10
1分钟前
抚琴祛魅完成签到 ,获得积分10
1分钟前
脑洞疼应助karstbing采纳,获得10
1分钟前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
1分钟前
苗条的紫文完成签到,获得积分10
1分钟前
贤惠的曼寒完成签到,获得积分10
1分钟前
1分钟前
田様应助光轮2000采纳,获得10
1分钟前
李昕123完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688315
关于积分的说明 14853234
捐赠科研通 4688214
什么是DOI,文献DOI怎么找? 2540526
邀请新用户注册赠送积分活动 1506981
关于科研通互助平台的介绍 1471521