Synthesizing heterogeneous lung lesions for virtual imaging trials

病变 计算机科学 成像体模 人工智能 同种类的 人口 核(代数) 模式识别(心理学) 计算机视觉 放射科 医学 病理 数学 环境卫生 组合数学
作者
Cindy McCabe,Justin Solomon,Paul Segars,Ehsan Abadi,Ehsan Samei
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 54-54 被引量:1
标识
DOI:10.1117/12.3006199
摘要

Virtual imaging trials of malignancies require realistic models of lesions. The purpose of this study was to create hybrid lesion models and associated tool incorporating morphological and textural realism. The developed tool creates a lesion morphology based on input parameters describing its shape and spiculation. Internal heterogeneity is added as 3D clustered lumpy background (CLB), allowing for various sub-classes of lesions including full solid, semi-solid, and ground-glass lesions. To insert a lesion into a full body human model (e.g., XCAT phantom), the edges of the lesion are blended into the surrounding background using a parameterizable Gaussian blurring technique. The developed lesion tool allows users to define lesion sizes either manually or automatically following population distribution of lesion sizes. Similarly, the tool allows users to insert lesions either manually or automatically while avoiding intersections with pulmonary structures. The utility of the developed lesion tool was demonstrated by modeling both homogeneous and heterogeneous lung lesions and inserting them into 5 human models (XCAT). The human models were imaged using a validated CT simulator (DukeSim). Images of heterogeneous lesions were visually comparable to clinical images. The first order and texture radiomics features (58 features) were extracted from all image series and compared using the Pearson correlation. The two lesion generation techniques for full solid lesions (homogeneous vs. heterogeneous) were observed to have a weak correlation (r<0.4) for 35 of 58 features using a soft kernel, and for 43 of 58 features using a sharp kernel—capturing the structural differences between the two models. The lesion tool proved capable of forming different lung lesion sub-classes (full-solid, semi-solid, and ground-glass) through its input parameters to emulate the lesion characteristics of interest for a virtual lesion study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助缥缈耷采纳,获得10
刚刚
刚刚
悄悄.完成签到,获得积分10
2秒前
2秒前
完美世界应助bjyx采纳,获得10
2秒前
2秒前
笨笨从凝发布了新的文献求助10
5秒前
狸花小喵发布了新的文献求助10
5秒前
Yuzi_YU发布了新的文献求助10
8秒前
星辰大海应助LiHuiwang采纳,获得10
8秒前
晚风中追风完成签到,获得积分10
11秒前
12秒前
狄安娜GoGo完成签到,获得积分10
12秒前
狸花小喵完成签到,获得积分10
12秒前
廉凌波发布了新的文献求助10
14秒前
mtfx完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
18秒前
18秒前
黑糖珍珠发布了新的文献求助10
19秒前
友好凌柏发布了新的文献求助10
19秒前
充电宝应助廉凌波采纳,获得10
20秒前
20秒前
李理发布了新的文献求助10
21秒前
22秒前
23秒前
25秒前
笨笨从凝完成签到,获得积分10
25秒前
共享精神应助李理采纳,获得10
26秒前
狄安娜GoGo发布了新的文献求助10
26秒前
27秒前
噗噗发布了新的文献求助10
27秒前
28秒前
愉悦完成签到,获得积分10
28秒前
cocolu应助11111采纳,获得10
30秒前
racill发布了新的文献求助10
31秒前
23完成签到,获得积分10
31秒前
LiHuiwang发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316490
求助须知:如何正确求助?哪些是违规求助? 2948188
关于积分的说明 8539647
捐赠科研通 2624112
什么是DOI,文献DOI怎么找? 1435850
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651614