Synthesizing heterogeneous lung lesions for virtual imaging trials

病变 计算机科学 成像体模 人工智能 同种类的 人口 核(代数) 模式识别(心理学) 计算机视觉 放射科 医学 病理 数学 环境卫生 组合数学
作者
Cindy McCabe,Justin Solomon,Paul Segars,Ehsan Abadi,Ehsan Samei
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 54-54 被引量:1
标识
DOI:10.1117/12.3006199
摘要

Virtual imaging trials of malignancies require realistic models of lesions. The purpose of this study was to create hybrid lesion models and associated tool incorporating morphological and textural realism. The developed tool creates a lesion morphology based on input parameters describing its shape and spiculation. Internal heterogeneity is added as 3D clustered lumpy background (CLB), allowing for various sub-classes of lesions including full solid, semi-solid, and ground-glass lesions. To insert a lesion into a full body human model (e.g., XCAT phantom), the edges of the lesion are blended into the surrounding background using a parameterizable Gaussian blurring technique. The developed lesion tool allows users to define lesion sizes either manually or automatically following population distribution of lesion sizes. Similarly, the tool allows users to insert lesions either manually or automatically while avoiding intersections with pulmonary structures. The utility of the developed lesion tool was demonstrated by modeling both homogeneous and heterogeneous lung lesions and inserting them into 5 human models (XCAT). The human models were imaged using a validated CT simulator (DukeSim). Images of heterogeneous lesions were visually comparable to clinical images. The first order and texture radiomics features (58 features) were extracted from all image series and compared using the Pearson correlation. The two lesion generation techniques for full solid lesions (homogeneous vs. heterogeneous) were observed to have a weak correlation (r<0.4) for 35 of 58 features using a soft kernel, and for 43 of 58 features using a sharp kernel—capturing the structural differences between the two models. The lesion tool proved capable of forming different lung lesion sub-classes (full-solid, semi-solid, and ground-glass) through its input parameters to emulate the lesion characteristics of interest for a virtual lesion study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WS发布了新的文献求助10
刚刚
刚刚
咿咿呀呀发布了新的文献求助10
刚刚
喻辰星完成签到,获得积分10
1秒前
许女士完成签到,获得积分10
1秒前
xinxin完成签到,获得积分10
3秒前
3秒前
3秒前
悦耳的冰枫完成签到 ,获得积分10
3秒前
现代的又柔完成签到,获得积分10
3秒前
羽毛发布了新的文献求助10
3秒前
samtol完成签到,获得积分10
4秒前
4秒前
Amber应助keran采纳,获得10
4秒前
xiongjian完成签到,获得积分10
4秒前
5秒前
5秒前
Orange应助喻辰星采纳,获得10
5秒前
leave发布了新的文献求助20
5秒前
5秒前
我是老大应助诗谙采纳,获得10
6秒前
欢欢发布了新的文献求助10
6秒前
十万大山兵大大完成签到,获得积分20
6秒前
科研通AI5应助科研欣路采纳,获得30
6秒前
kydd发布了新的文献求助10
8秒前
Papillon完成签到,获得积分10
8秒前
平淡的文龙完成签到,获得积分10
8秒前
盛夏完成签到,获得积分10
8秒前
贤惠的正豪完成签到,获得积分20
9秒前
10秒前
沛沛完成签到,获得积分10
11秒前
四月完成签到,获得积分10
11秒前
12秒前
常青完成签到,获得积分10
12秒前
WxChen发布了新的文献求助10
12秒前
guoguo完成签到,获得积分10
13秒前
MADKAI发布了新的文献求助10
13秒前
13秒前
今后应助.....采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740