已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image Generation and Lesion Segmentation of Brain Tumors and Stroke Based on GAN and 3D ResU-Net

病变 图像分割 计算机科学 冲程(发动机) 人工智能 分割 计算机视觉 模式识别(心理学) 医学 病理 物理 热力学
作者
Mingkang Sun,Xiang Li,Weiye Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/access.2024.3383880
摘要

In recent years, with the development of medical image analysis, the image processing of brain tumor and stroke has been deeply studied.However, when processing clinical medical imaging data with different characteristics or information collected from different sensors or modalities, that is, multimodal imaging data, the segmentation accuracy is low.Therefore, the research is based on generative adversarial networks and three-dimensional residual U-shaped networks to study brain tumor and stroke image generation and lesion segmentation.Experimental results showed the three models performed best in various conversions.For example, in T1→ Flair conversion, the generative multi-modal image analysis model based on perceptual loop consistency had an average peak signal-to-noise ratio of 23.951 ± 2.735, an average structural similarity of 0.873 ± 0.046, and an average root mean square error of 16.998 ± 6.184.All three models significantly raised the segmentation effectiveness of lesions, such as the combination of dual-scale perceptual loop generation adversarial network and three-dimensional residual U-shaped network for generative multi-modal image generation and lesion segmentation algorithm.Using three real input modalities, its HD index value of 75.082 and precision index value of 0.696 were better than the HD index value of 84.776 and Precision index value of 0.686.In addition, the study also conducted ablation experiments on a generative multi-modal image analysis model based on dual-scale perceptual loop consistency, indicating that the cavity residual module is hoped to have a good influence on lesion segmentation.Overall, the algorithm model proposed in the study has high effectiveness in the generation and segmentation of brain tumors and stroke images, and is of great significance for the development of medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Banbor2021完成签到,获得积分10
1秒前
xch发布了新的文献求助10
1秒前
小兵发布了新的文献求助10
2秒前
mochi发布了新的文献求助10
2秒前
微笑曼安关注了科研通微信公众号
8秒前
不安的凡梦完成签到,获得积分20
10秒前
子翱完成签到 ,获得积分10
11秒前
czy完成签到 ,获得积分10
12秒前
man应助小兵采纳,获得10
16秒前
orixero应助小兵采纳,获得10
16秒前
我是老大应助寻123采纳,获得10
17秒前
阿俊完成签到 ,获得积分10
17秒前
18秒前
Wang发布了新的文献求助10
18秒前
21秒前
乐观的颦完成签到,获得积分10
21秒前
22秒前
微笑曼安发布了新的文献求助10
23秒前
子平完成签到 ,获得积分10
23秒前
机灵哈密瓜完成签到,获得积分10
23秒前
pentayouth发布了新的文献求助10
26秒前
小羊完成签到 ,获得积分10
26秒前
wangyr11发布了新的文献求助10
28秒前
29秒前
yuqinghui98完成签到 ,获得积分10
29秒前
30秒前
不安青牛应助jie采纳,获得10
33秒前
xiaowang完成签到 ,获得积分10
34秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
bjbmtxy应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
英姑应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
寻123发布了新的文献求助10
36秒前
抽疯的电风扇13完成签到 ,获得积分10
37秒前
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253