Integrated Somatic Mutation Network Diffusion Model for Stratification of Breast Cancer into Different Metabolic Mutation Subtypes

体细胞 突变 乳腺癌 生物 种系突变 遗传学 癌症 生物信息学 基因
作者
Dongqing Su,Honghao Li,Tao Wang,Min Zou,Haodong Wei,Yuqiang Xiong,Hongmei Sun,Shiyuan Wang,Qilemuge Xi,Yongchun Zuo,Lei Yang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0115748936298012240322091111
摘要

Background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. Objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. Methods: The somatic mutation profile of breast cancer patients was analyzed and smoothed by utilizing a network diffusion model within the protein-protein interaction network to construct a comprehensive somatic mutation network diffusion profile. Subsequently, a deep clustering approach was employed to explore metabolic mutation typing in breast cancer based on integrated metabolic pathway information and the somatic mutation network diffusion profile. In addition, we employed deep neural networks and machine learning prediction models to assess the feasibility of predicting drug responses through somatic mutation network diffusion profiles. Results: Significant differences in prognosis and metabolic heterogeneity were observed among the different metabolic mutation subtypes, characterized by distinct alterations in metabolic pathways and genetic mutations, and these mutational features offered potential targets for subtype-specific therapies. Furthermore, there was a strong consistency between the results of the drug response prediction model constructed on the somatic mutation network diffusion profile and the actual observed drug responses. Conclusion: Metabolic mutation typing of cancer assists in guiding patient prognosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助www采纳,获得10
刚刚
CipherSage应助aaa采纳,获得10
2秒前
2秒前
珊珊完成签到,获得积分10
8秒前
赘婿应助南楼小阁主采纳,获得10
8秒前
zyyin完成签到,获得积分10
12秒前
kk应助珊珊采纳,获得10
12秒前
14秒前
研友_VZG7GZ应助ll采纳,获得10
14秒前
隐形曼青应助Justtry采纳,获得10
14秒前
15秒前
LongH2完成签到,获得积分10
15秒前
傲安完成签到 ,获得积分10
15秒前
liu发布了新的文献求助10
17秒前
17秒前
大个应助bixiuwu采纳,获得10
18秒前
xxxx完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
段晓坤发布了新的文献求助10
23秒前
不想起昵称完成签到 ,获得积分10
24秒前
www123qe发布了新的文献求助10
24秒前
香菜发布了新的文献求助10
25秒前
FFFFFF完成签到 ,获得积分10
25秒前
26秒前
赘婿应助小蘑菇采纳,获得10
26秒前
26秒前
28秒前
28秒前
30秒前
充电宝应助混沌采纳,获得10
30秒前
liu完成签到,获得积分10
32秒前
33秒前
8R60d8应助www123qe采纳,获得10
33秒前
34秒前
科研小辣鸡完成签到,获得积分10
34秒前
34秒前
34秒前
Ammr完成签到 ,获得积分10
35秒前
金鑫水淼发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971644
求助须知:如何正确求助?哪些是违规求助? 3516269
关于积分的说明 11181862
捐赠科研通 3251441
什么是DOI,文献DOI怎么找? 1795889
邀请新用户注册赠送积分活动 876131
科研通“疑难数据库(出版商)”最低求助积分说明 805246