Integrated Somatic Mutation Network Diffusion Model for Stratification of Breast Cancer into Different Metabolic Mutation Subtypes

体细胞 突变 乳腺癌 生物 种系突变 遗传学 癌症 生物信息学 基因
作者
Dongqing Su,Honghao Li,Tao Wang,Min Zou,Haodong Wei,Yuqiang Xiong,Hongmei Sun,Shiyuan Wang,Qilemuge Xi,Yongchun Zuo,Lei Yang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748936298012240322091111
摘要

Background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. Objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. Methods: The somatic mutation profile of breast cancer patients was analyzed and smoothed by utilizing a network diffusion model within the protein-protein interaction network to construct a comprehensive somatic mutation network diffusion profile. Subsequently, a deep clustering approach was employed to explore metabolic mutation typing in breast cancer based on integrated metabolic pathway information and the somatic mutation network diffusion profile. In addition, we employed deep neural networks and machine learning prediction models to assess the feasibility of predicting drug responses through somatic mutation network diffusion profiles. Results: Significant differences in prognosis and metabolic heterogeneity were observed among the different metabolic mutation subtypes, characterized by distinct alterations in metabolic pathways and genetic mutations, and these mutational features offered potential targets for subtype-specific therapies. Furthermore, there was a strong consistency between the results of the drug response prediction model constructed on the somatic mutation network diffusion profile and the actual observed drug responses. Conclusion: Metabolic mutation typing of cancer assists in guiding patient prognosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juzi发布了新的文献求助10
1秒前
墨尘发布了新的文献求助50
1秒前
华仔应助优美紫槐采纳,获得10
2秒前
吃午饭等晚饭完成签到,获得积分10
2秒前
2秒前
暴龙兽完成签到,获得积分10
3秒前
3秒前
顾矜应助linxiang采纳,获得10
3秒前
拉哈80应助Sun采纳,获得20
3秒前
4秒前
万能图书馆应助LZR采纳,获得10
4秒前
5秒前
5秒前
7秒前
无奈的山雁完成签到,获得积分20
8秒前
8秒前
充电宝应助缓慢的灵枫采纳,获得10
10秒前
11秒前
小蘑菇应助开心千青采纳,获得10
11秒前
怀念逸完成签到,获得积分10
12秒前
无花果应助ElbingX采纳,获得10
12秒前
xiankanyun发布了新的文献求助10
12秒前
Lynne完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
闪闪小小完成签到 ,获得积分10
16秒前
暴龙兽发布了新的文献求助30
17秒前
完美世界应助Lynne采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
康K发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
20秒前
SciGPT应助霸气的小刺猬采纳,获得30
22秒前
22秒前
hh发布了新的文献求助10
23秒前
1900发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745613
求助须知:如何正确求助?哪些是违规求助? 5427464
关于积分的说明 15353580
捐赠科研通 4885538
什么是DOI,文献DOI怎么找? 2626776
邀请新用户注册赠送积分活动 1575347
关于科研通互助平台的介绍 1532064