Integrated Somatic Mutation Network Diffusion Model for Stratification of Breast Cancer into Different Metabolic Mutation Subtypes

体细胞 突变 乳腺癌 生物 种系突变 遗传学 癌症 生物信息学 基因
作者
Dongqing Su,Honghao Li,Tao Wang,Min Zou,Haodong Wei,Yuqiang Xiong,Hongmei Sun,Shiyuan Wang,Qilemuge Xi,Yongchun Zuo,Lei Yang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0115748936298012240322091111
摘要

Background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. background: Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features. Objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. objective: In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients. Methods: The somatic mutation profile of breast cancer patients was analyzed and smoothed by utilizing a network diffusion model within the protein-protein interaction network to construct a comprehensive somatic mutation network diffusion profile. Subsequently, a deep clustering approach was employed to explore metabolic mutation typing in breast cancer based on integrated metabolic pathway information and the somatic mutation network diffusion profile. In addition, we employed deep neural networks and machine learning prediction models to assess the feasibility of predicting drug responses through somatic mutation network diffusion profiles. Results: Significant differences in prognosis and metabolic heterogeneity were observed among the different metabolic mutation subtypes, characterized by distinct alterations in metabolic pathways and genetic mutations, and these mutational features offered potential targets for subtype-specific therapies. Furthermore, there was a strong consistency between the results of the drug response prediction model constructed on the somatic mutation network diffusion profile and the actual observed drug responses. Conclusion: Metabolic mutation typing of cancer assists in guiding patient prognosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢文瑞发布了新的文献求助10
刚刚
练习时长两年半应助1111采纳,获得10
刚刚
1秒前
1秒前
飞跃发布了新的文献求助10
1秒前
sonic发布了新的文献求助20
1秒前
curry完成签到 ,获得积分10
1秒前
小二郎应助毛毛虫采纳,获得10
3秒前
3秒前
碧蓝断天完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
乐观小蕊完成签到,获得积分10
6秒前
man完成签到,获得积分10
6秒前
6秒前
共享精神应助1234采纳,获得10
6秒前
SSSShawn发布了新的文献求助10
7秒前
7秒前
充电宝应助淡然的小萱采纳,获得10
7秒前
宁缺毋滥发布了新的文献求助10
9秒前
李健应助May采纳,获得10
9秒前
小章发布了新的文献求助10
9秒前
眯眯眼的宛白完成签到,获得积分20
10秒前
10秒前
玛卡巴卡发布了新的文献求助10
11秒前
胡昕跃发布了新的文献求助10
12秒前
wuli亲故完成签到,获得积分10
13秒前
13秒前
斑ban完成签到,获得积分10
13秒前
可靠的0发布了新的文献求助10
13秒前
甜甜的静柏完成签到 ,获得积分10
14秒前
14秒前
15秒前
17秒前
17秒前
Ricey应助焦立超采纳,获得10
18秒前
无花果应助晚来天欲雪采纳,获得10
18秒前
19秒前
SSSShawn完成签到,获得积分20
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496