Energy-efficient operation of portable air cleaners based on real-time prediction of non-uniform concentrations of indoor air pollutants in open offices

室内空气质量 通风(建筑) 能源消耗 粒子群优化 环境科学 模拟 占用率 空气质量指数 换气 汽车工程 阿什拉1.90 工程类 实时计算 环境工程 计算机科学 气象学 电气工程 算法 土木工程 机械工程 物理
作者
Difei Chen,M. Liu,Wei-chen Guo,Yiqun Li,Bin Xu,Wei Ye
出处
期刊:Building and Environment [Elsevier]
卷期号:256: 111478-111478
标识
DOI:10.1016/j.buildenv.2024.111478
摘要

In an open office environment with high occupant density and random occupancy patterns, excessive energy consumption is often observed because mechanical ventilation (MV) is usually designed and operated assuming a full-occupancy-based ventilation rate (VR). Considering the duo challenges of post-pandemic and climate change, this study proposes a real-time monitoring and optimization approach for operating portable air cleaners (PACs) to assist and reduce the energy consumption of the MV while maintaining the minimal VR and improving indoor air quality (IAQ). The approach was as follows. First, by assuming four VRs and 36 different emission sources, numerical simulations were conducted and validated based on an actual open office on non-uniform concentrations of a surrogate for indoor air pollutants (IAPs) throughout the breathing zone. Second, the pre- and post-purified IAP distributions were obtained using a limited number of sensors and trained by two artificial neural networks. Third, the real-time optimization of PACs' on/off operation and placements was accomplished by the particle swarm optimization algorithm to balance energy output and improve IAQ simultaneously. Results showed that by deploying four sensors, the predictions of post-purifying concentrations were in acceptable accuracy (i.e., CV-RMSE <2.0%) within 30–40s. Using at most three PACs resulted in a significant decline in local IAP concentration levels. Meanwhile, an average reduction of total energy consumption of MV and PACs was 34.6% compared to using MV to reach the same levels. Overall, this study supports the use of PACs to assist MV in achieving energy efficiency and good IAQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两张发布了新的文献求助10
1秒前
1秒前
Akim应助执着的小蘑菇采纳,获得10
1秒前
调研昵称发布了新的文献求助10
1秒前
念念发布了新的文献求助10
2秒前
畅快的鱼发布了新的文献求助10
2秒前
搞怪藏今完成签到 ,获得积分10
3秒前
yu发布了新的文献求助10
3秒前
3秒前
qifa发布了新的文献求助10
3秒前
kingwhitewing完成签到,获得积分10
3秒前
4秒前
WTT发布了新的文献求助10
4秒前
仄兀完成签到,获得积分10
4秒前
四喜完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
Yenom完成签到 ,获得积分10
7秒前
8秒前
8秒前
SciGPT应助浩浩大人采纳,获得10
8秒前
迅速冰岚发布了新的文献求助10
8秒前
8秒前
WTT完成签到,获得积分20
9秒前
9秒前
苹果煎饼发布了新的文献求助10
9秒前
yan发布了新的文献求助10
9秒前
云肜发布了新的文献求助30
9秒前
Hello应助FatDanny采纳,获得10
10秒前
斯文败类应助娜行采纳,获得10
10秒前
庄小因完成签到,获得积分10
10秒前
热心市民小刘给热心市民小刘的求助进行了留言
10秒前
小钟完成签到,获得积分10
10秒前
徐慕源发布了新的文献求助10
10秒前
11秒前
深情安青应助任医生采纳,获得10
11秒前
11秒前
sherrinford完成签到,获得积分10
11秒前
科研通AI2S应助VDC采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678