已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving the precision prognostic evaluation of hospital outcome for heart failure: a multimodal deep learning model leveraging admission notes and clinical tabular data (Preprint)

预印本 计算机科学 结果(博弈论) 深度学习 人工智能 医学 万维网 数学 数理经济学
作者
Zhenyue Gao,Xiaoli Liu,Yu Kang,Pan Hu,Xiu Zhang,Wei Yan,Muyang Yan,Pengming Yu,Qing Zhang,Wendong Xiao,Zhengbo Zhang
出处
期刊:Journal of Medical Internet Research 卷期号:26: e54363-e54363 被引量:1
标识
DOI:10.2196/54363
摘要

Background Clinical notes contain contextualized information beyond structured data related to patients’ past and current health status. Objective This study aimed to design a multimodal deep learning approach to improve the evaluation precision of hospital outcomes for heart failure (HF) using admission clinical notes and easily collected tabular data. Methods Data for the development and validation of the multimodal model were retrospectively derived from 3 open-access US databases, including the Medical Information Mart for Intensive Care III v1.4 (MIMIC-III) and MIMIC-IV v1.0, collected from a teaching hospital from 2001 to 2019, and the eICU Collaborative Research Database v1.2, collected from 208 hospitals from 2014 to 2015. The study cohorts consisted of all patients with critical HF. The clinical notes, including chief complaint, history of present illness, physical examination, medical history, and admission medication, as well as clinical variables recorded in electronic health records, were analyzed. We developed a deep learning mortality prediction model for in-hospital patients, which underwent complete internal, prospective, and external evaluation. The Integrated Gradients and SHapley Additive exPlanations (SHAP) methods were used to analyze the importance of risk factors. Results The study included 9989 (16.4%) patients in the development set, 2497 (14.1%) patients in the internal validation set, 1896 (18.3%) in the prospective validation set, and 7432 (15%) patients in the external validation set. The area under the receiver operating characteristic curve of the models was 0.838 (95% CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767 (95% CI 0.762-0.772), for the internal, prospective, and external validation sets, respectively. The area under the receiver operating characteristic curve of the multimodal model outperformed that of the unimodal models in all test sets, and tabular data contributed to higher discrimination. The medical history and physical examination were more useful than other factors in early assessments. Conclusions The multimodal deep learning model for combining admission notes and clinical tabular data showed promising efficacy as a potentially novel method in evaluating the risk of mortality in patients with HF, providing more accurate and timely decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巫马小霜发布了新的文献求助10
1秒前
书文混四方完成签到 ,获得积分10
1秒前
黑白发布了新的文献求助10
2秒前
无奈秋荷发布了新的文献求助10
3秒前
4秒前
逃离地球完成签到 ,获得积分10
5秒前
博士完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
11秒前
傲娇淇发布了新的文献求助10
13秒前
14秒前
咖啡续命完成签到 ,获得积分10
15秒前
涵Allen完成签到 ,获得积分10
16秒前
陌路完成签到 ,获得积分10
18秒前
19秒前
20秒前
传奇3应助无奈秋荷采纳,获得10
21秒前
shinysparrow完成签到,获得积分0
21秒前
Liu_Ci应助傲娇淇采纳,获得10
23秒前
23秒前
DanBao发布了新的文献求助20
24秒前
Ryan发布了新的文献求助50
25秒前
xlk2222完成签到,获得积分10
26秒前
登峰发布了新的文献求助10
30秒前
傲娇淇完成签到,获得积分20
31秒前
大龙哥886完成签到,获得积分10
32秒前
35秒前
幸符完成签到 ,获得积分10
37秒前
pupi完成签到 ,获得积分10
44秒前
yan完成签到 ,获得积分10
48秒前
49秒前
feifei完成签到,获得积分10
50秒前
酷酷豌豆射手完成签到,获得积分10
51秒前
安静的故事完成签到,获得积分10
53秒前
枕头也重名完成签到 ,获得积分10
54秒前
Myla完成签到,获得积分20
58秒前
忧伤的冰薇完成签到 ,获得积分10
58秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125899
求助须知:如何正确求助?哪些是违规求助? 2776224
关于积分的说明 7729457
捐赠科研通 2431591
什么是DOI,文献DOI怎么找? 1292142
科研通“疑难数据库(出版商)”最低求助积分说明 622497
版权声明 600392