计算机科学
视觉分析
分析
分类器(UML)
人工智能
领域(数学)
领域(数学分析)
领域知识
机器学习
行为模式
主题专家
可视化
构造(python库)
人机交互
数据挖掘
数据科学
专家系统
软件工程
数学
数学分析
纯数学
程序设计语言
作者
Natalia Andrienko,Gennady Andrienko,Alexander Artikis,Periklis Mantenoglou,Salvatore Rinzivillo
出处
期刊:IEEE Computer Graphics and Applications
[Institute of Electrical and Electronics Engineers]
日期:2024-03-20
卷期号:44 (3): 14-29
被引量:1
标识
DOI:10.1109/mcg.2024.3379851
摘要
Detecting complex behavioral patterns in temporal data, such as moving object trajectories, often relies on precise formal specifications derived from vague domain concepts. However, such methods are sensitive to noise and minor fluctuations, leading to missed pattern occurrences. Conversely, machine learning (ML) approaches require abundant labeled examples, posing practical challenges. Our visual analytics approach enables domain experts to derive, test, and combine interval-based features to discriminate patterns and generate training data for ML algorithms. Visual aids enhance recognition and characterization of expected patterns and discovery of unexpected ones. Case studies demonstrate feasibility and effectiveness of the approach, which offers a novel framework for integrating human expertise and analytical reasoning with ML techniques, advancing data analytics.
科研通智能强力驱动
Strongly Powered by AbleSci AI