亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Adaptive Approach for Probabilistic Wind Power Forecasting Based on Meta-Learning

概率逻辑 风力发电 概率预测 风电预测 计算机科学 机器学习 元学习(计算机科学) 功率(物理) 电力系统 人工智能 工程类 电气工程 系统工程 量子力学 物理 任务(项目管理)
作者
Zichao Meng,Ye Guo,Hongbin Sun
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1814-1833 被引量:6
标识
DOI:10.1109/tste.2024.3379835
摘要

This paper studies an adaptive approach for probabilistic wind power forecasting (WPF) including offline and online learning procedures. In the offline learning stage, a base forecast model is trained via inner and outer loop updates of meta-learning, which endows the base forecast model with excellent adaptability to different forecast tasks, i.e., probabilistic WPF with different lead times or locations. In the online learning stage, the base forecast model is applied to online forecasting combined with incremental learning techniques. On this basis, the online forecast takes full advantage of recent information and the adaptability of the base forecast model. Two applications are developed based on our proposed approach concerning forecasting with different lead times (temporal adaptation) and forecasting for newly established wind farms (spatial adaptation), respectively. Numerical tests were conducted on real-world wind power data sets. Simulation results validate the advantages in adaptivity of the proposed methods compared with existing alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
TXZ06完成签到,获得积分10
17秒前
35秒前
吃葡萄不吐葡萄皮完成签到,获得积分20
41秒前
50秒前
大个应助虚拟的蘑菇采纳,获得10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助wdasdas采纳,获得10
1分钟前
2分钟前
可靠的平彤完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
博弈完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
老实的衬衫完成签到 ,获得积分10
3分钟前
隐形曼青应助fishbig采纳,获得10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
monned完成签到 ,获得积分10
3分钟前
清爽的冬寒完成签到 ,获得积分10
3分钟前
3分钟前
学生信的大叔完成签到,获得积分10
4分钟前
5分钟前
Omni完成签到,获得积分10
5分钟前
yang完成签到 ,获得积分10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538710
求助须知:如何正确求助?哪些是违规求助? 4625778
关于积分的说明 14596849
捐赠科研通 4566428
什么是DOI,文献DOI怎么找? 2503311
邀请新用户注册赠送积分活动 1481395
关于科研通互助平台的介绍 1452763