A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation

人工智能 定量磁化率图 计算机科学 人工神经网络 模式识别(心理学) 正规化(语言学) 机器学习 磁共振成像 医学 放射科
作者
Ming Zhang,Ruimin Feng,Zhenghao Li,Jie Feng,Qing Wu,Zhiyong Zhang,Chengxin Ma,Jinsong Wu,Fuhua Yan,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103173-103173
标识
DOI:10.1016/j.media.2024.103173
摘要

Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的访风完成签到,获得积分10
3秒前
3秒前
Jhinnnn完成签到,获得积分10
4秒前
5秒前
敬老院N号应助最爱吃火锅采纳,获得30
9秒前
9秒前
10秒前
小枣完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
快乐的胖子应助小黑马采纳,获得20
12秒前
大熊发布了新的文献求助10
13秒前
13秒前
孤独聪健完成签到,获得积分10
14秒前
14秒前
至幸给至幸的求助进行了留言
15秒前
YAO完成签到,获得积分10
16秒前
17秒前
gaogao292发布了新的文献求助10
17秒前
17秒前
脑洞疼应助游一采纳,获得10
17秒前
17秒前
Akim应助啦啦啦啦啦采纳,获得10
18秒前
18秒前
莫莫莫完成签到 ,获得积分10
19秒前
阿斯台德完成签到,获得积分10
19秒前
乌力吉发布了新的文献求助10
20秒前
李小喵发布了新的文献求助10
21秒前
余健发布了新的文献求助10
22秒前
在水一方应助大熊采纳,获得10
22秒前
努力搞科研完成签到,获得积分10
23秒前
24秒前
纯真小笼包关注了科研通微信公众号
24秒前
hahhhah完成签到 ,获得积分10
25秒前
彭于晏应助李冯程采纳,获得10
26秒前
26秒前
魔幻巨人完成签到,获得积分10
26秒前
SYLH应助精明的寒天采纳,获得20
26秒前
鸽子完成签到,获得积分10
28秒前
FashionBoy应助乌力吉采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182