A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation

人工智能 定量磁化率图 计算机科学 人工神经网络 模式识别(心理学) 正规化(语言学) 机器学习 磁共振成像 医学 放射科
作者
Ming Zhang,Ruimin Feng,Zhenghao Li,Jie Feng,Qing Wu,Zhiyong Zhang,Chengxin Ma,Jinsong Wu,Fuhua Yan,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103173-103173
标识
DOI:10.1016/j.media.2024.103173
摘要

Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助青苔采纳,获得10
刚刚
今后应助简单的丹南采纳,获得10
刚刚
刚刚
TORCH完成签到 ,获得积分10
刚刚
1秒前
打打应助Niu采纳,获得10
1秒前
1秒前
研友_nEW4G8完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
lee发布了新的文献求助10
2秒前
tianzml0应助科研通管家采纳,获得10
3秒前
tianzml0应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
yueyue完成签到,获得积分10
3秒前
3秒前
复杂的水彤完成签到 ,获得积分10
3秒前
dungaway发布了新的文献求助10
4秒前
5秒前
Seyn发布了新的文献求助10
5秒前
科研菜狗发布了新的文献求助10
5秒前
BSDL发布了新的文献求助10
5秒前
5秒前
kiminonawa应助仁爱发卡采纳,获得10
5秒前
自觉南风完成签到,获得积分10
6秒前
6秒前
6秒前
勤劳画笔完成签到,获得积分20
6秒前
zhuzhuzhu发布了新的文献求助30
7秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443