Dynamic path planning via Dueling Double Deep Q-Network (D3QN) with prioritized experience replay

计算机科学 路径(计算) 运动规划 人工智能 计算机网络 机器人
作者
Mehmet Gök
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:158: 111503-111503 被引量:11
标识
DOI:10.1016/j.asoc.2024.111503
摘要

Path planning is a key requirement for mobile robots employed for different tasks such as rescue or transport missions. Conventional methods such as A⁎ or Dijkstra to tackle path planning problem need a premise map of the robot's environment. Nowadays, dynamic path planning is popular research topic, which drives mobile robots without prior static requirements. Deep reinforcement learning (DRL), which is another popular research area, is being harnessed to solve dynamic path planning problem by the researchers. In this study, Deep Q-Networks, which is a subdomain of DRL are opted to solve dynamic path planning problem. We first employ well known techniques Double Deep Q-Networks (D2QN) and Dueling Double Deep Q-Networks (D3QN) to train a model which can drive a mobile robot in environments with static and dynamic obstacles within 3 different configurations. Then we propose D3QN with Prioritized Experience Replay (PER) extension in order to further optimize the DRL model. We created a test bed to measure the performance of the DRL models against 99 randomly generated goal locations. According to our experiments, D3QN-PER method performs better than D2QN and D3QN in terms of path length and travel time to the goal without any collisions. Robot Operating System and Gazebo simulation environment is utilized to realize the training and testing environments, thus, the trained DRL models can be deployed to any ROS compatible robot seamlessly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01231009yrjz完成签到,获得积分10
1秒前
3秒前
4秒前
小丸子发布了新的文献求助10
5秒前
8秒前
fcf335gj发布了新的文献求助10
8秒前
FashionBoy应助啸天狼狗采纳,获得30
9秒前
jia完成签到,获得积分20
10秒前
德鲁猪完成签到,获得积分10
12秒前
可爱的石头完成签到,获得积分10
12秒前
13秒前
jia发布了新的文献求助10
13秒前
小丸子完成签到,获得积分10
13秒前
危机的曼凝完成签到 ,获得积分10
16秒前
17秒前
大模型应助Mr_老旭采纳,获得10
18秒前
卢11发布了新的文献求助30
18秒前
18秒前
天青完成签到,获得积分10
19秒前
19秒前
alice发布了新的文献求助10
20秒前
拨云见日完成签到 ,获得积分10
20秒前
zq发布了新的文献求助10
20秒前
科研体育生完成签到 ,获得积分10
20秒前
CodeCraft应助Re采纳,获得10
21秒前
SC完成签到,获得积分10
21秒前
21秒前
mhl11应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得30
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
mhl11应助科研通管家采纳,获得10
22秒前
火星上易真完成签到 ,获得积分20
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
海风应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292561
求助须知:如何正确求助?哪些是违规求助? 2928864
关于积分的说明 8438726
捐赠科研通 2600953
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642924