Dynamic path planning via Dueling Double Deep Q-Network (D3QN) with prioritized experience replay

计算机科学 路径(计算) 运动规划 人工智能 计算机网络 机器人
作者
Mehmet GÖK
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:158: 111503-111503 被引量:22
标识
DOI:10.1016/j.asoc.2024.111503
摘要

Path planning is a key requirement for mobile robots employed for different tasks such as rescue or transport missions. Conventional methods such as A⁎ or Dijkstra to tackle path planning problem need a premise map of the robot's environment. Nowadays, dynamic path planning is popular research topic, which drives mobile robots without prior static requirements. Deep reinforcement learning (DRL), which is another popular research area, is being harnessed to solve dynamic path planning problem by the researchers. In this study, Deep Q-Networks, which is a subdomain of DRL are opted to solve dynamic path planning problem. We first employ well known techniques Double Deep Q-Networks (D2QN) and Dueling Double Deep Q-Networks (D3QN) to train a model which can drive a mobile robot in environments with static and dynamic obstacles within 3 different configurations. Then we propose D3QN with Prioritized Experience Replay (PER) extension in order to further optimize the DRL model. We created a test bed to measure the performance of the DRL models against 99 randomly generated goal locations. According to our experiments, D3QN-PER method performs better than D2QN and D3QN in terms of path length and travel time to the goal without any collisions. Robot Operating System and Gazebo simulation environment is utilized to realize the training and testing environments, thus, the trained DRL models can be deployed to any ROS compatible robot seamlessly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直凌文完成签到,获得积分10
刚刚
LL发布了新的文献求助10
刚刚
海棠花未眠完成签到,获得积分10
2秒前
2秒前
3秒前
Happyness应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得20
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
无花果应助宋嘉新采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
Happyness应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得30
4秒前
丘比特应助liang采纳,获得30
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
Xiaoxiao应助科研通管家采纳,获得10
5秒前
boxi完成签到,获得积分10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
天天快乐应助无限绿旋采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
qiaokizhang完成签到,获得积分10
5秒前
5秒前
5秒前
iNk应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ED应助多喝开开采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
5秒前
Happyness应助科研通管家采纳,获得10
5秒前
Gauss应助科研通管家采纳,获得30
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
周辰完成签到,获得积分10
6秒前
Ava应助震震采纳,获得10
6秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582