EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:4
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diyan_36完成签到,获得积分10
1秒前
语青完成签到,获得积分10
3秒前
yanzi完成签到,获得积分20
4秒前
柏林熊发布了新的文献求助10
6秒前
宋文娟完成签到,获得积分10
6秒前
8秒前
哈哈2022完成签到,获得积分10
8秒前
曲奇饼干完成签到,获得积分10
9秒前
爱学习爱劳动完成签到,获得积分10
11秒前
15秒前
16秒前
hh完成签到,获得积分10
16秒前
17秒前
大个应助曲奇饼干采纳,获得10
17秒前
19秒前
19秒前
八方面完成签到 ,获得积分10
19秒前
七个泡芙发布了新的文献求助10
19秒前
xuexinru发布了新的文献求助10
21秒前
小草发布了新的文献求助10
22秒前
juju完成签到,获得积分10
22秒前
25秒前
Felix发布了新的文献求助30
25秒前
25秒前
寻道图强应助buno采纳,获得30
26秒前
27秒前
28秒前
勤恳风华完成签到,获得积分10
29秒前
哈哈嘻嘻完成签到,获得积分10
30秒前
斐_应助Felix采纳,获得10
32秒前
saltynosza关注了科研通微信公众号
33秒前
支初晴完成签到 ,获得积分10
34秒前
Xixihaha完成签到,获得积分10
34秒前
鸡蛋灌饼完成签到,获得积分10
36秒前
鹿雅彤发布了新的文献求助10
37秒前
一勺四季完成签到 ,获得积分10
37秒前
38秒前
39秒前
yang完成签到 ,获得积分10
43秒前
小二郎应助科研通管家采纳,获得10
43秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180810
求助须知:如何正确求助?哪些是违规求助? 2831007
关于积分的说明 7982557
捐赠科研通 2492866
什么是DOI,文献DOI怎么找? 1329898
科研通“疑难数据库(出版商)”最低求助积分说明 635814
版权声明 602954