亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:7
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
船长完成签到,获得积分10
3秒前
爆米花应助油柑美式采纳,获得10
9秒前
卓初露完成签到 ,获得积分10
9秒前
英姑应助白华苍松采纳,获得10
11秒前
leemonster完成签到,获得积分10
11秒前
xc完成签到,获得积分10
13秒前
呆萌初南完成签到 ,获得积分10
15秒前
莫春莹完成签到 ,获得积分10
15秒前
山野的雾完成签到 ,获得积分10
16秒前
17秒前
Jasper应助qq158014169采纳,获得10
20秒前
20秒前
21秒前
小小威廉发布了新的文献求助10
21秒前
21秒前
21秒前
无闻完成签到,获得积分10
22秒前
22秒前
kittency完成签到 ,获得积分10
25秒前
26秒前
巫衣絮完成签到 ,获得积分10
27秒前
无闻发布了新的文献求助10
27秒前
顾矜应助小小威廉采纳,获得10
28秒前
领导范儿应助Ashore采纳,获得10
29秒前
29秒前
彬彬完成签到,获得积分10
30秒前
32秒前
郭大侠发布了新的文献求助10
32秒前
高高的以山完成签到 ,获得积分10
33秒前
dana发布了新的文献求助10
34秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
浮游应助无闻采纳,获得10
35秒前
008lsq发布了新的文献求助10
37秒前
bkagyin应助mbf采纳,获得30
38秒前
俏皮元珊完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283