EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:7
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xt_489完成签到,获得积分10
刚刚
JamesPei应助聪明的白筠采纳,获得10
1秒前
今后应助水中鱼采纳,获得10
1秒前
书虫发布了新的文献求助10
4秒前
5秒前
郭阳发布了新的文献求助10
5秒前
5秒前
8秒前
9秒前
醉熏的鑫完成签到,获得积分10
9秒前
李蕤蕤完成签到,获得积分10
10秒前
小唐尼发布了新的文献求助30
10秒前
11秒前
12秒前
Huang_being发布了新的文献求助10
13秒前
shawn发布了新的文献求助10
13秒前
13秒前
FashionBoy应助dara采纳,获得10
14秒前
着急的大米完成签到,获得积分20
15秒前
orixero应助hello采纳,获得10
15秒前
星辰大海应助顺利煎蛋采纳,获得10
16秒前
16秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
GGBOND发布了新的文献求助10
19秒前
20秒前
wu发布了新的文献求助10
20秒前
纳米酶催化完成签到,获得积分10
21秒前
pppp发布了新的文献求助10
22秒前
桐桐应助林宝雯采纳,获得10
22秒前
程程发布了新的文献求助10
24秒前
完美世界应助着急的大米采纳,获得10
24秒前
24秒前
24秒前
bkagyin应助冰琪采纳,获得10
24秒前
万能图书馆应助anna采纳,获得10
26秒前
29秒前
29秒前
dara完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105