已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:7
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助黎乐荷采纳,获得10
刚刚
一直向前发布了新的文献求助10
1秒前
义气幼珊完成签到 ,获得积分10
2秒前
艺涵发布了新的文献求助10
2秒前
邵一一完成签到 ,获得积分10
3秒前
Delight完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
10秒前
Cici完成签到 ,获得积分10
10秒前
yx_cheng应助wei采纳,获得20
11秒前
科研达人发布了新的文献求助10
12秒前
小何发布了新的文献求助10
12秒前
qian发布了新的文献求助10
13秒前
sopha完成签到,获得积分10
14秒前
zhouleiwang发布了新的文献求助10
14秒前
水若琳完成签到,获得积分10
14秒前
米米完成签到,获得积分10
21秒前
研友_Zlx3aZ完成签到,获得积分10
23秒前
小二郎应助Ray采纳,获得10
23秒前
章浩泽发布了新的文献求助10
24秒前
andrele发布了新的文献求助10
29秒前
fff完成签到 ,获得积分10
30秒前
一缕阳光完成签到,获得积分10
31秒前
31秒前
32秒前
zhuxuanfeng完成签到,获得积分10
34秒前
123456完成签到,获得积分20
35秒前
abib完成签到,获得积分10
35秒前
Grandir发布了新的文献求助10
35秒前
lizigongzhu发布了新的文献求助10
36秒前
爆米花应助mw采纳,获得10
36秒前
黎乐荷发布了新的文献求助10
37秒前
greenlu完成签到,获得积分10
39秒前
Yuuuu完成签到 ,获得积分10
40秒前
脑洞疼应助淡定海亦采纳,获得10
40秒前
田様应助123456采纳,获得10
41秒前
ljn0406完成签到,获得积分10
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256000
捐赠科研通 3270880
什么是DOI,文献DOI怎么找? 1805070
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216