EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:7
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助10
1秒前
单纯的又菱完成签到,获得积分10
1秒前
顾矜应助haru采纳,获得30
2秒前
搜集达人应助LLL采纳,获得10
2秒前
danhuang发布了新的文献求助10
3秒前
4秒前
魔猿发布了新的文献求助10
4秒前
无极微光给羽魄的求助进行了留言
5秒前
自信的冬日完成签到 ,获得积分10
5秒前
hhh完成签到,获得积分10
5秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
shuo0976完成签到,获得积分10
9秒前
今后应助111采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
传奇3应助111222333采纳,获得10
11秒前
Owen应助小新同学采纳,获得10
12秒前
zwt13104完成签到,获得积分10
12秒前
QinQin发布了新的文献求助10
14秒前
刻苦的麦片应助背后亦绿采纳,获得10
15秒前
hhhhhhan616发布了新的文献求助10
16秒前
大模型应助TaoJ采纳,获得10
16秒前
假面绅士发布了新的文献求助10
17秒前
17秒前
111222333完成签到,获得积分10
18秒前
lzg完成签到,获得积分10
18秒前
19秒前
JamesPei应助NeoWu采纳,获得10
20秒前
能干的小伙完成签到 ,获得积分10
20秒前
寒安完成签到,获得积分10
21秒前
指南针指北完成签到 ,获得积分10
22秒前
23秒前
tangguo完成签到,获得积分10
23秒前
LaTeXer应助怕黑的飞柏采纳,获得50
23秒前
111222333发布了新的文献求助10
24秒前
贰鸟应助jojo采纳,获得20
26秒前
量子星尘发布了新的文献求助30
28秒前
隐形曼青应助唠叨的白曼采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755