EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:7
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助bab采纳,获得10
刚刚
MYW发布了新的文献求助10
1秒前
Gaoge发布了新的文献求助10
1秒前
闪电完成签到 ,获得积分10
2秒前
3秒前
lf完成签到,获得积分10
3秒前
4秒前
GGG发布了新的文献求助10
5秒前
5秒前
5秒前
典雅的秋白完成签到,获得积分20
6秒前
6秒前
爱笑安露完成签到,获得积分10
6秒前
自闭中完成签到,获得积分10
7秒前
蝰蛇完成签到,获得积分10
8秒前
无花果应助疯狂的凝丹采纳,获得30
8秒前
8秒前
bpl完成签到,获得积分10
9秒前
hhh完成签到,获得积分10
9秒前
贴贴发布了新的文献求助10
9秒前
ccyy发布了新的文献求助10
9秒前
青青河边草完成签到,获得积分20
10秒前
魏一刀发布了新的文献求助10
10秒前
敏感的曼香完成签到,获得积分10
10秒前
zeng完成签到,获得积分10
11秒前
kk完成签到,获得积分10
11秒前
XIAOPI完成签到 ,获得积分10
12秒前
wohohoho完成签到,获得积分10
12秒前
可爱的玉米肠完成签到 ,获得积分10
13秒前
尚欣雨完成签到,获得积分10
14秒前
ningning完成签到 ,获得积分10
14秒前
默默新波完成签到 ,获得积分10
14秒前
Bihhh完成签到,获得积分10
15秒前
酷炫的天问完成签到,获得积分10
15秒前
斯文败类应助魏一刀采纳,获得10
16秒前
16秒前
16秒前
幽默囧完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080