Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration

黄斑变性 医学 人工智能 德鲁森 分割 光学相干层析成像 接收机工作特性 深度学习 眼科 视网膜 视网膜色素上皮 相关性 计算机科学 内科学 数学 几何学
作者
Federico Ricardi,Jonathan D. Oakley,Daniel B. Russakoff,Giacomo Boscia,Paolo Caselgrandi,Francesco Gelormini,Andrea Ghilardi,Giulia Pintore,Tommaso Tibaldi,Paola Marolo,Francesco Bandello,Michele Reibaldi,Enrico Borrelli
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:108 (10): 1436-1442 被引量:9
标识
DOI:10.1136/bjo-2023-324647
摘要

Purpose To develop and validate a deep learning model for the segmentation of five retinal biomarkers associated with neovascular age-related macular degeneration (nAMD). Methods 300 optical coherence tomography volumes from subject eyes with nAMD were collected. Images were manually segmented for the presence of five crucial nAMD features: intraretinal fluid, subretinal fluid, subretinal hyperreflective material, drusen/drusenoid pigment epithelium detachment (PED) and neovascular PED. A deep learning architecture based on a U-Net was trained to perform automatic segmentation of these retinal biomarkers and evaluated on the sequestered data. The main outcome measures were receiver operating characteristic curves for detection, summarised using the area under the curves (AUCs) both on a per slice and per volume basis, correlation score, enface topography overlap (reported as two-dimensional (2D) correlation score) and Dice coefficients. Results The model obtained a mean (±SD) AUC of 0.93 (±0.04) per slice and 0.88 (±0.07) per volume for fluid detection. The correlation score (R 2 ) between automatic and manual segmentation obtained by the model resulted in a mean (±SD) of 0.89 (±0.05). The mean (±SD) 2D correlation score was 0.69 (±0.04). The mean (±SD) Dice score resulted in 0.61 (±0.10). Conclusions We present a fully automated segmentation model for five features related to nAMD that performs at the level of experienced graders. The application of this model will open opportunities for the study of morphological changes and treatment efficacy in real-world settings. Furthermore, it can facilitate structured reporting in the clinic and reduce subjectivity in clinicians’ assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由依秋完成签到,获得积分10
1秒前
朴素的书琴完成签到,获得积分10
1秒前
hrzmlily完成签到,获得积分10
1秒前
taoyanhui完成签到,获得积分10
1秒前
星辰大海应助Duang采纳,获得10
1秒前
繁星发布了新的文献求助10
2秒前
xw完成签到,获得积分10
2秒前
完美世界应助solar@2030采纳,获得10
3秒前
4秒前
阳光冰颜完成签到,获得积分10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
star应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
7秒前
BareBear应助科研通管家采纳,获得10
7秒前
欣慰煎蛋应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
执着怜珊完成签到 ,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
BareBear应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
star应助科研通管家采纳,获得10
7秒前
langzhiquan应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
Smar_zcl应助科研通管家采纳,获得20
8秒前
8秒前
star应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
13841881385完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153