Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration

黄斑变性 医学 人工智能 德鲁森 分割 光学相干层析成像 接收机工作特性 深度学习 眼科 视网膜 视网膜色素上皮 相关性 计算机科学 内科学 数学 几何学
作者
Federico Ricardi,Jonathan D. Oakley,Daniel B. Russakoff,Giacomo Boscia,Paolo Caselgrandi,Francesco Gelormini,Andrea Ghilardi,Giulia Pintore,Tommaso Tibaldi,Paola Marolo,Francesco Bandello,Michele Reibaldi,Enrico Borrelli
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjo-324647 被引量:2
标识
DOI:10.1136/bjo-2023-324647
摘要

Purpose To develop and validate a deep learning model for the segmentation of five retinal biomarkers associated with neovascular age-related macular degeneration (nAMD). Methods 300 optical coherence tomography volumes from subject eyes with nAMD were collected. Images were manually segmented for the presence of five crucial nAMD features: intraretinal fluid, subretinal fluid, subretinal hyperreflective material, drusen/drusenoid pigment epithelium detachment (PED) and neovascular PED. A deep learning architecture based on a U-Net was trained to perform automatic segmentation of these retinal biomarkers and evaluated on the sequestered data. The main outcome measures were receiver operating characteristic curves for detection, summarised using the area under the curves (AUCs) both on a per slice and per volume basis, correlation score, enface topography overlap (reported as two-dimensional (2D) correlation score) and Dice coefficients. Results The model obtained a mean (±SD) AUC of 0.93 (±0.04) per slice and 0.88 (±0.07) per volume for fluid detection. The correlation score (R 2 ) between automatic and manual segmentation obtained by the model resulted in a mean (±SD) of 0.89 (±0.05). The mean (±SD) 2D correlation score was 0.69 (±0.04). The mean (±SD) Dice score resulted in 0.61 (±0.10). Conclusions We present a fully automated segmentation model for five features related to nAMD that performs at the level of experienced graders. The application of this model will open opportunities for the study of morphological changes and treatment efficacy in real-world settings. Furthermore, it can facilitate structured reporting in the clinic and reduce subjectivity in clinicians’ assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一朵会长树的花完成签到,获得积分10
1秒前
爆米花应助威武的小熊猫采纳,获得10
2秒前
有星星的小路完成签到,获得积分10
2秒前
jianglu完成签到,获得积分10
3秒前
ding发布了新的文献求助30
3秒前
ComVivas发布了新的文献求助30
3秒前
3秒前
lvlei发布了新的文献求助10
3秒前
薰硝壤应助阿呆采纳,获得10
4秒前
Die完成签到,获得积分10
4秒前
清脆忆南完成签到 ,获得积分10
4秒前
加菲丰丰举报求助违规成功
5秒前
稳重的若雁举报求助违规成功
5秒前
Singularity举报求助违规成功
5秒前
5秒前
5秒前
琉璃苣应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226