烟气
化学
环境科学
微量气体
跟踪(心理语言学)
环境化学
二氧化硫
废物管理
无机化学
有机化学
哲学
语言学
工程类
作者
Shu-Qi Gang,Zi-Yue Liu,WU Su-xia,Shu Yang,Ruihan Wang,Jian‐Long Du
标识
DOI:10.1016/j.jhazmat.2024.134180
摘要
Obtaining suitable adsorbents for selective separation of SO2 from flue gas still remains an important issue. A stable Zr(IV)-MOF (Zr-PTBA) can be conveniently synthesized through the self-assembly of a tetracarboxylic acid ligand (H4L = 4,4',4'',4'''-(1,4-phenylenebis(azanetriyl))tetrabenzoic acid) and ZrCl4 in the presence of trace water. It exhibits a three-dimensional porous structure. The BET surface area is 1112.72 m2/g and the average pore size distribution focus on 5.9, 8.0 and 9.3 Å. Interestingly, Zr-PTBA shows selective adsorption of SO2. The maximum uptake reaches 223.21 cm3/g at ambient condition. While it exhibits lower adsorption uptake of CO2 (30.50 cm3/g) and hardly adsorbs O2 (2.57 cm3/g) and N2 (1.31 cm3/g). Higher IAST selectivities of SO2/CO2 (21.9), SO2/N2 (912.7), SO2/O2 (2269.9) and SO2/CH4 (85.0) have been obtained, which reveal its' excellent gas separation performance. Breakthrough experiment further confirms its application for flue gas deep desulfurization both in dry and humid conditions. Furthermore, the gas adsorption results and mechanisms have also been studied by theoretical calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI