Coupling the remote sensing data-enhanced SWAT model with the bidirectional long short-term memory model to improve daily streamflow simulations

水流 联轴节(管道) 期限(时间) 环境科学 中期 遥感 计算机科学 地质学 物理 材料科学 地理 地图学 流域 量子力学 经济 冶金 宏观经济学
作者
Lei Jin,Huazhu Xue,Guotao Dong,Yue Han,Zichuang Li,Yaokang Lian
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:634: 131117-131117 被引量:17
标识
DOI:10.1016/j.jhydrol.2024.131117
摘要

Global climate change has led to an increase in the frequency and scale of extreme weather events worldwide, and there is an urgent need to develop better-performing hydrological models to improve the accuracy of streamflow simulations and to facilitate water resource planning and management. The Soil and Water Assessment Tool (SWAT) has a notable physical foundation and is widely used in hydrological research. However, it uses a simplified vegetation growth model, introducing uncertainty into the simulation results. This study focused on improving the model based on remotely sensed phenological and leaf area index (LAI) data. Phenological data were used to define vegetation dormancy, and the LAI data replaced the corresponding data simulated by the original model. This approach improved the accuracy of the model in describing vegetation dynamics. Then, the enhanced SWAT model was coupled with the bidirectional long short-term memory (BiLSTM) model to validate the simulation of hydrological processes upstream of the Hei River. During model validation, the performance of the enhanced SWAT model in simulating streamflow (R2 = 0.835, NSE = 0.819) was better than that of the original SWAT model (R2 = 0.821, NSE = 0.805). In terms of simulating evapotranspiration, the enhanced SWAT model demonstrated even greater advantages. During the verification period, compared to those of the SWAT model, the R2 and NSE values of the enhanced SWAT model for daily-scale simulations increased from 0.196 and −0.269 to 0.777 and 0.732, respectively. The R2 and NSE values for monthly-scale simulations increased from 0.782 and 0.678 to 0.906 and 0.851, respectively. Simultaneously, the performance levels of two coupling approaches in streamflow prediction were compared, i.e., direct coupling of the original SWAT and BiLSTM models (SWAT-BiLSTM) and coupling of the enhanced SWAT and BiLSTM models (enhanced SWAT-BiLSTM). The results showed that the enhanced SWAT-BiLSTM model always performed better than the SWAT-BiLSTM model during the entire simulation period, especially the enhanced SWAT-BiLSTM model, which could more accurately predict peak streamflow changes. This study demonstrated that coupling an improved physical model with deep learning models could improve the streamflow prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助张张张哈哈哈采纳,获得10
刚刚
ding应助七安采纳,获得10
1秒前
1秒前
外向寒凝发布了新的文献求助30
2秒前
我是老大应助DreamerKing采纳,获得10
3秒前
英姑应助标致的冰淇淋采纳,获得10
4秒前
5秒前
852应助刻苦的士萧采纳,获得10
6秒前
6秒前
baiyi2024发布了新的文献求助10
7秒前
朴实夏寒完成签到,获得积分10
7秒前
痴情的博超应助YXYWZMSZ采纳,获得30
8秒前
8秒前
FashionBoy应助刘桔采纳,获得10
8秒前
Oz发布了新的文献求助10
8秒前
留胡子的丹彤完成签到 ,获得积分10
9秒前
10秒前
轻风发布了新的文献求助10
11秒前
小李发布了新的文献求助10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Ava应助米玄采纳,获得10
14秒前
725完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749099
求助须知:如何正确求助?哪些是违规求助? 3292389
关于积分的说明 10076350
捐赠科研通 3007880
什么是DOI,文献DOI怎么找? 1651883
邀请新用户注册赠送积分活动 786858
科研通“疑难数据库(出版商)”最低求助积分说明 751861