Coupling the remote sensing data-enhanced SWAT model with the bidirectional long short-term memory model to improve daily streamflow simulations

水流 联轴节(管道) 期限(时间) 环境科学 中期 遥感 计算机科学 地质学 物理 材料科学 地理 地图学 流域 量子力学 经济 冶金 宏观经济学
作者
Lei Jin,Huazhu Xue,Guotao Dong,Yue Han,Zichuang Li,Yaokang Lian
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:634: 131117-131117 被引量:17
标识
DOI:10.1016/j.jhydrol.2024.131117
摘要

Global climate change has led to an increase in the frequency and scale of extreme weather events worldwide, and there is an urgent need to develop better-performing hydrological models to improve the accuracy of streamflow simulations and to facilitate water resource planning and management. The Soil and Water Assessment Tool (SWAT) has a notable physical foundation and is widely used in hydrological research. However, it uses a simplified vegetation growth model, introducing uncertainty into the simulation results. This study focused on improving the model based on remotely sensed phenological and leaf area index (LAI) data. Phenological data were used to define vegetation dormancy, and the LAI data replaced the corresponding data simulated by the original model. This approach improved the accuracy of the model in describing vegetation dynamics. Then, the enhanced SWAT model was coupled with the bidirectional long short-term memory (BiLSTM) model to validate the simulation of hydrological processes upstream of the Hei River. During model validation, the performance of the enhanced SWAT model in simulating streamflow (R2 = 0.835, NSE = 0.819) was better than that of the original SWAT model (R2 = 0.821, NSE = 0.805). In terms of simulating evapotranspiration, the enhanced SWAT model demonstrated even greater advantages. During the verification period, compared to those of the SWAT model, the R2 and NSE values of the enhanced SWAT model for daily-scale simulations increased from 0.196 and −0.269 to 0.777 and 0.732, respectively. The R2 and NSE values for monthly-scale simulations increased from 0.782 and 0.678 to 0.906 and 0.851, respectively. Simultaneously, the performance levels of two coupling approaches in streamflow prediction were compared, i.e., direct coupling of the original SWAT and BiLSTM models (SWAT-BiLSTM) and coupling of the enhanced SWAT and BiLSTM models (enhanced SWAT-BiLSTM). The results showed that the enhanced SWAT-BiLSTM model always performed better than the SWAT-BiLSTM model during the entire simulation period, especially the enhanced SWAT-BiLSTM model, which could more accurately predict peak streamflow changes. This study demonstrated that coupling an improved physical model with deep learning models could improve the streamflow prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙橙橙橙橙子完成签到,获得积分20
刚刚
刚刚
1秒前
1秒前
天天快乐应助宋浩然采纳,获得10
1秒前
2秒前
MC.SU发布了新的文献求助10
2秒前
lll发布了新的文献求助10
3秒前
Hello应助三点一共采纳,获得10
3秒前
wanci应助噜啦噜啦采纳,获得10
3秒前
4秒前
4秒前
傻傻的乌冬面完成签到,获得积分10
4秒前
5秒前
搜集达人应助冷漠的布丁采纳,获得10
5秒前
Antigen发布了新的文献求助30
6秒前
6秒前
大力荷花发布了新的文献求助10
6秒前
香蕉觅云应助谦让的傲芙采纳,获得10
7秒前
烟花应助韭菜何子采纳,获得10
7秒前
he完成签到,获得积分10
8秒前
8秒前
彭日晓发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
skyangar发布了新的文献求助10
11秒前
11秒前
youhao6a发布了新的文献求助10
11秒前
11秒前
11秒前
爆米花应助雨点采纳,获得10
12秒前
Sunsky发布了新的文献求助10
12秒前
12秒前
yang发布了新的文献求助10
12秒前
小榆应助lll采纳,获得10
13秒前
ttnnn完成签到,获得积分10
14秒前
luria发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788