Accuracy, Reliability, and Repeatability of a Novel Artificial Intelligence Algorithm Converting Two-Dimensional Radiographs to Three-Dimensional Bone Models for Total Knee Arthroplasty

重复性 医学 射线照相术 算法 可靠性(半导体) 卡钳 尸体痉挛 人工智能 核医学 计算机科学 放射科 外科 数学 统计 物理 量子力学 功率(物理) 几何学
作者
Levi Reina Fernandes,Carlos H. Arce,Gonçalo Martinho,João Pedro Campos,R. Michael Meneghini
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:38 (10): 2032-2036 被引量:7
标识
DOI:10.1016/j.arth.2022.12.007
摘要

With the emergence of advanced technology, such as robotics, three-dimensional (3D) imaging is necessary to execute preoperative surgical plans accurately. However, 3D imaging adds cost and potential risk to patients. This study determined the measurement accuracy, reliability, and repeatability of a novel artificial intelligence (AI) algorithm which converts two-dimensional (2D) radiographs to 3D bone models.An AI algorithm was developed to convert 2D radiographs to 3D bone model reconstructions. The accuracy of the AI algorithm was evaluated by comparing mean absolute error in measurements performed on 3D bone reconstructions, 3D computed tomography (CT) scans, and manual measurements on five cadaveric knees. Reliability and repeatability of the AI algorithm were evaluated by assessing the inter-observer and intra-observer agreement between measurements performed on 3D bone reconstructions, respectively.Accuracy of the AI algorithm was considered excellent with mean absolute errors <2mm in 9 of 12 anatomical parameters compared with measurements performed on CTs and manual calipers. All inter-observer and intra-observer correlation coefficients were greater than 0.90 representing a high level of measurement reliability and repeatability by independent observers and the same observers.This particular AI algorithm demonstrated a high degree of accuracy, reliability, and repeatability for converting 2D radiographs to 3D bone reconstructions similar to a CT-scan. Study results suggest this AI algorithm has the potential for use in preoperative surgical planning due to its efficiencies related to cost and time and reduced radiation exposure without the use of 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Philiadddd采纳,获得10
刚刚
鱼头星星完成签到 ,获得积分10
刚刚
Uranus完成签到,获得积分10
1秒前
英俊的铭应助洪洪1采纳,获得10
1秒前
1秒前
自由完成签到,获得积分10
2秒前
2秒前
2秒前
细腻冷松发布了新的文献求助10
3秒前
祈雨的鲸鱼应助水三寿采纳,获得10
3秒前
siu敏发布了新的文献求助10
3秒前
xisiwangdian发布了新的文献求助10
3秒前
4秒前
火星上的宫苴完成签到 ,获得积分10
4秒前
黄沙漠发布了新的文献求助10
5秒前
wanci应助森囚采纳,获得10
6秒前
7秒前
wdw2501发布了新的文献求助10
8秒前
大个应助林森采纳,获得10
10秒前
阳光傲菡完成签到,获得积分10
10秒前
10秒前
GQL完成签到 ,获得积分10
10秒前
科研顺利完成签到,获得积分10
11秒前
11秒前
领导范儿应助siu敏采纳,获得10
11秒前
12秒前
小二郎应助淇淇采纳,获得30
12秒前
烟花应助高木同学采纳,获得10
12秒前
12秒前
13秒前
15秒前
细腻冷松完成签到,获得积分10
15秒前
LiChard发布了新的文献求助10
15秒前
15秒前
善学以致用应助zyy采纳,获得10
16秒前
17秒前
张维发布了新的文献求助10
18秒前
成就的鹤完成签到,获得积分10
18秒前
英俊的铭应助一往而深采纳,获得10
18秒前
黄沙漠发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221