A Geometric Deep Learning Framework for Accurate Indoor Localization

计算机科学 人工智能 联营 指纹(计算) 卷积神经网络 模式识别(心理学) 感知器 编码 深度学习 支持向量机 估计员 机器学习 人工神经网络 数学 统计 基因 化学 生物化学
作者
Xuanshu Luo,Nirvana Meratnia
标识
DOI:10.1109/ipin54987.2022.9918118
摘要

Recent advances in (deep) machine learning offer new opportunities to solve indoor fingerprint-based localization problems. However, the majority of localization solutions employing popular machine learning models, such as k-nearest neighbors ( $k$ -NN), support vector machine (SVM), multi-layer perceptron (MLP), and convolutional neural network (CNN), do not sufficiently realize inability of these models to fully represent the non-Euclidean nature of fingerprint data, which consequently degrades their performance. In this paper, we first explain how these commonly-used models fail to effectively encode the fingerprint data due to their assumption (or lack of it) regarding fingerprints and/or geometric and topology information hidden within the RSSI measurements. Based on this, we provide our motivation to use geometric deep learning for indoor fingerprint-based localization. We then present a systematic approach to transform fingerprints into graphs, accounting for the co-existence of multiple radio frequency signal technologies. Finally, we present our localization approach based on a GraphSAGE estimator. Through extensive performance evaluation, using two different case studies (datasets), we show to what extent our proposed localization approach improves upon the state-of-the-art localization solutions. We also conclude that the best configuration of our approach requires both the edge features in the graphs and the pooling aggregator in the GraphSAGE model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞飞完成签到,获得积分20
刚刚
vincy完成签到 ,获得积分10
1秒前
2秒前
所所应助拉布拉多多不多采纳,获得10
2秒前
Akim应助若离采纳,获得10
3秒前
王春起发布了新的文献求助10
3秒前
5秒前
6秒前
周计划钒发布了新的文献求助50
6秒前
6秒前
SCI_Dark工人完成签到 ,获得积分10
6秒前
wang完成签到,获得积分10
6秒前
紫津完成签到 ,获得积分10
6秒前
空洛发布了新的文献求助50
6秒前
商毛毛发布了新的文献求助10
6秒前
7秒前
清修发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
风中的青完成签到,获得积分10
8秒前
8秒前
优雅的行云应助宋磊采纳,获得10
8秒前
Chanpi完成签到,获得积分10
9秒前
9秒前
研友_nVqwxL发布了新的文献求助10
9秒前
Tina发布了新的文献求助10
10秒前
柠檬味电子对儿完成签到,获得积分10
10秒前
11秒前
11秒前
clock完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
王春起完成签到,获得积分10
13秒前
顾矜应助哦猪猪真厉害采纳,获得10
13秒前
xiahou发布了新的文献求助10
14秒前
Elian发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712