A Geometric Deep Learning Framework for Accurate Indoor Localization

计算机科学 人工智能 联营 指纹(计算) 卷积神经网络 模式识别(心理学) 感知器 编码 深度学习 支持向量机 估计员 机器学习 人工神经网络 数学 统计 基因 化学 生物化学
作者
Xuanshu Luo,Nirvana Meratnia
标识
DOI:10.1109/ipin54987.2022.9918118
摘要

Recent advances in (deep) machine learning offer new opportunities to solve indoor fingerprint-based localization problems. However, the majority of localization solutions employing popular machine learning models, such as k-nearest neighbors ( $k$ -NN), support vector machine (SVM), multi-layer perceptron (MLP), and convolutional neural network (CNN), do not sufficiently realize inability of these models to fully represent the non-Euclidean nature of fingerprint data, which consequently degrades their performance. In this paper, we first explain how these commonly-used models fail to effectively encode the fingerprint data due to their assumption (or lack of it) regarding fingerprints and/or geometric and topology information hidden within the RSSI measurements. Based on this, we provide our motivation to use geometric deep learning for indoor fingerprint-based localization. We then present a systematic approach to transform fingerprints into graphs, accounting for the co-existence of multiple radio frequency signal technologies. Finally, we present our localization approach based on a GraphSAGE estimator. Through extensive performance evaluation, using two different case studies (datasets), we show to what extent our proposed localization approach improves upon the state-of-the-art localization solutions. We also conclude that the best configuration of our approach requires both the edge features in the graphs and the pooling aggregator in the GraphSAGE model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song发布了新的文献求助10
1秒前
ding应助时尚初之采纳,获得10
1秒前
罗拉完成签到,获得积分10
1秒前
1秒前
2秒前
yun尘世完成签到,获得积分10
3秒前
3秒前
自信南霜完成签到,获得积分10
3秒前
tingting9完成签到,获得积分10
6秒前
6秒前
7秒前
卡布奇诺完成签到,获得积分10
7秒前
13223456发布了新的文献求助10
7秒前
青山落日秋月春风完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
小马甲应助动听的雅绿采纳,获得30
12秒前
1177发布了新的文献求助10
14秒前
14秒前
喜喵喵完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
11关注了科研通微信公众号
16秒前
123456完成签到,获得积分10
17秒前
时尚初之发布了新的文献求助10
17秒前
ddd完成签到,获得积分10
18秒前
喜喵喵发布了新的文献求助10
20秒前
无情的函发布了新的文献求助10
20秒前
麦乐迪完成签到 ,获得积分10
21秒前
SYLH应助云横秦岭家何在采纳,获得10
21秒前
bkagyin应助如意枫叶采纳,获得10
22秒前
科目三应助Quinna采纳,获得10
22秒前
22秒前
彭栋发布了新的文献求助10
22秒前
22秒前
13223456完成签到,获得积分10
23秒前
gsq完成签到,获得积分20
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136