已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Fault Feature Selection and Diagnosis Method for Rotating Machinery With Symmetrized Dot Pattern Representation

特征选择 模式识别(心理学) 人工智能 特征提取 计算机科学 随机森林 分类器(UML) 特征(语言学) 排名(信息检索) 数据挖掘 机器学习 语言学 哲学
作者
Gang Tang,Hao Hu,Jian Feng Kong,Haoxiang Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 1447-1461 被引量:12
标识
DOI:10.1109/jsen.2022.3227099
摘要

Fault diagnosis methods based on machine learning have made great progress for rotating machinery. The main steps of the machine learning process involve feature extraction, selection, and classification. Feature selection improves classification accuracy and reduces diagnosis time by selecting the better features. Due to the difficulty of traditional feature selection methods to rank the feature importance of each class, the best subset of features could hardly be obtained. Therefore, this article proposes a new feature selection method to address the shortcomings of the above traditional methods, called Feature Ranking based on Optimal Class Distance Ratio (FROCDR), which can choose the optimal features between every two classes of samples to obtain feature ranking that is conducive to classification. In order to comprehensively extract the fault information in the signal, the multiscale analysis and the variational mode decomposition (VMD) method are applied to process the vibration signals under different scales and frequency bands, and the processed signals are visualized by symmetrized dot pattern (SDP). In addition, features are extracted from the obtained SDP images, and the proposed FROCDR method is used to select the best subset of features. The final diagnosis task is accomplished by a random forest (RF) classifier. Experimental cases of bearing and gear data show that the proposed method has higher diagnostic accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
三月聚粮应助Michael采纳,获得10
5秒前
ppf发布了新的文献求助10
5秒前
小马甲应助cc采纳,获得10
7秒前
DDD关注了科研通微信公众号
8秒前
12秒前
孤独靖柏发布了新的文献求助10
13秒前
Orange应助123456qi采纳,获得10
13秒前
17秒前
18秒前
JoeyCory完成签到,获得积分10
18秒前
20秒前
20秒前
DDD发布了新的文献求助10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
爱静静应助caolijun采纳,获得10
20秒前
22秒前
jhxie完成签到,获得积分10
22秒前
KYT发布了新的文献求助10
23秒前
24秒前
jihenyouai0213完成签到,获得积分10
24秒前
sgc关注了科研通微信公众号
24秒前
26秒前
ddd完成签到,获得积分10
27秒前
monned完成签到 ,获得积分10
28秒前
55555发布了新的文献求助20
28秒前
28秒前
科研通AI2S应助俭朴的期待采纳,获得10
29秒前
Dani发布了新的文献求助10
29秒前
cc发布了新的文献求助10
29秒前
quora发布了新的文献求助30
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946548
关于积分的说明 8530507
捐赠科研通 2622198
什么是DOI,文献DOI怎么找? 1434385
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832