A Novel Fault Feature Selection and Diagnosis Method for Rotating Machinery With Symmetrized Dot Pattern Representation

特征选择 模式识别(心理学) 人工智能 特征提取 计算机科学 随机森林 分类器(UML) 特征(语言学) 排名(信息检索) 数据挖掘 机器学习 语言学 哲学
作者
Gang Tang,Hao Hu,Jian Feng Kong,Haoxiang Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (2): 1447-1461 被引量:12
标识
DOI:10.1109/jsen.2022.3227099
摘要

Fault diagnosis methods based on machine learning have made great progress for rotating machinery. The main steps of the machine learning process involve feature extraction, selection, and classification. Feature selection improves classification accuracy and reduces diagnosis time by selecting the better features. Due to the difficulty of traditional feature selection methods to rank the feature importance of each class, the best subset of features could hardly be obtained. Therefore, this article proposes a new feature selection method to address the shortcomings of the above traditional methods, called Feature Ranking based on Optimal Class Distance Ratio (FROCDR), which can choose the optimal features between every two classes of samples to obtain feature ranking that is conducive to classification. In order to comprehensively extract the fault information in the signal, the multiscale analysis and the variational mode decomposition (VMD) method are applied to process the vibration signals under different scales and frequency bands, and the processed signals are visualized by symmetrized dot pattern (SDP). In addition, features are extracted from the obtained SDP images, and the proposed FROCDR method is used to select the best subset of features. The final diagnosis task is accomplished by a random forest (RF) classifier. Experimental cases of bearing and gear data show that the proposed method has higher diagnostic accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha发布了新的文献求助10
1秒前
yeye完成签到,获得积分10
4秒前
赵歆玥关注了科研通微信公众号
5秒前
lh发布了新的文献求助10
6秒前
7秒前
刘林美发布了新的文献求助10
7秒前
9秒前
霸气的保温杯完成签到 ,获得积分10
10秒前
nanjiren完成签到,获得积分10
11秒前
12秒前
搜集达人应助寒染雾采纳,获得10
12秒前
完美世界应助小小小珂卿采纳,获得10
13秒前
一叶完成签到 ,获得积分10
15秒前
恋雅颖月应助dabao采纳,获得10
16秒前
16秒前
xlli00发布了新的文献求助10
17秒前
巧克力小蛋糕完成签到,获得积分10
20秒前
21秒前
22秒前
zpz完成签到 ,获得积分10
22秒前
赵歆玥发布了新的文献求助10
22秒前
24秒前
Issac完成签到,获得积分10
24秒前
24秒前
寒染雾发布了新的文献求助10
25秒前
天天快乐应助gogoyoco采纳,获得10
25秒前
失眠问晴发布了新的文献求助10
25秒前
胡言乱语完成签到,获得积分10
27秒前
28秒前
30秒前
唯美发布了新的文献求助10
30秒前
鳗鱼剑身完成签到,获得积分20
31秒前
朔风完成签到,获得积分10
31秒前
yimiyangguang完成签到 ,获得积分10
32秒前
32秒前
33秒前
VISSUA发布了新的文献求助10
33秒前
35秒前
PMoLGGYM2021发布了新的文献求助10
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176