前列腺癌
脂肪生成
柠檬酸循环
谷氨酰胺
LNCaP公司
β氧化
癌症研究
谷氨酰胺分解
生物
脂肪酸
癌症
脂肪酸代谢
癌细胞
脂肪酸合成
代谢途径
生物化学
新陈代谢
化学
内科学
医学
氨基酸
作者
Gio Fidelito,David P. De Souza,Birunthi Niranjan,William De Nardo,Shivakumar Keerthikumar,Kristin K. Brown,Renea A. Taylor,Matthew J. Watt
标识
DOI:10.1158/1541-7786.mcr-22-0796
摘要
Cancer cells undergo metabolic reprogramming to meet increased bioenergetic demands. Studies in cells and mice have highlighted the importance of oxidative metabolism and lipogenesis in prostate cancer; however, the metabolic landscape of human prostate cancer remains unclear. To address this knowledge gap, we performed radiometric (14C) and stable (13C) isotope tracing assays in precision-cut slices of patient-derived xenografts (PDX). Glucose, glutamine, and fatty acid oxidation was variably upregulated in malignant PDXs compared with benign PDXs. De novo lipogenesis (DNL) and storage of free fatty acids into phospholipids and triacylglycerols were increased in malignant PDXs. There was no difference in substrate utilization between localized and metastatic PDXs and hierarchical clustering revealed marked metabolic heterogeneity across all PDXs. Mechanistically, glucose utilization was mediated by acetyl-CoA production rather than carboxylation of pyruvate, while glutamine entered the tricarboxylic acid cycle through transaminase reactions before being utilized via oxidative or reductive pathways. Blocking fatty acid uptake or fatty acid oxidation with pharmacologic inhibitors was sufficient to reduce cell viability in PDX-derived organoids, whereas blockade of DNL, or glucose or glutamine oxidation induced variable and limited therapeutic efficacy. These findings demonstrate that human prostate cancer, irrespective of disease stage, can effectively utilize all metabolic substrates, albeit with marked heterogeneity across tumors. We also confirm that fatty acid uptake and oxidation are targetable metabolic dependencies in human prostate cancer.Prostate cancer utilizes multiple substrates to fuel energy requirements, yet pharmacologic targeting of fatty acid uptake and oxidation reveals metabolic dependencies in localized and metastatic tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI