Adaptive Model-Predictive-Control-Based Real-Time Energy Management of Fuel Cell Hybrid Electric Vehicles

电池(电) 模型预测控制 能源管理 动态规划 燃料效率 计算机科学 能源管理系统 荷电状态 二次规划 混合动力系统 区间(图论) 线性规划 汽车工程 控制理论(社会学) 控制工程 工程类 能量(信号处理) 数学优化 控制(管理) 算法 功率(物理) 人工智能 物理 机器学习 组合数学 统计 量子力学 数学
作者
Chao Jia,Wei Qiao,Junwei Cui,Liyan Qu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 2681-2694 被引量:42
标识
DOI:10.1109/tpel.2022.3214782
摘要

To compete with battery electric vehicles, fuel cell (FC) hybrid electric vehicles (FCHEVs) are required to offer better performance in fuel economy and FC durability. To this end, this article proposes a novel real-time adaptive model predictive control (AMPC)-based energy management strategy (EMS) for FCHEVs to improve their fuel efficiency and mitigate the degradation of their onboard FC hybrid systems. First, a linear parameter-varying (LPV) prediction model of the FC hybrid system that considers the system parameter variation is developed. The model offers sufficient accuracy while enabling the real-time implementation capability of the AMPC. Then, an AMPC strategy is proposed to optimally distribute the load current of the FCHEV between the FC and the battery in real time. In each control interval of the AMPC, the LPV prediction model is updated online to adapt to the variations of the battery state of charge. The constrained optimization problem of the AMPC is then formulated to achieve a desired tradeoff among four performance metrics and is further transformed into a quadratic programming problem, which can be solved in real time. Hardware-in-the-loop tests are performed on a downscaled FC hybrid system with the proposed AMPC-based EMS, a commonly used rule-based EMS, an equivalent consumption minimization strategy, and an improved MPC-based EMS, respectively. Results show that among the four real-time EMSs, the AMPC-based EMS achieves the best performance in reducing hydrogen consumption and FC current fluctuation and the smallest optimality gap with respect to an offline dynamic programming-based optimal EMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助caoyy采纳,获得10
刚刚
1秒前
科研通AI2S应助DreamMaker采纳,获得10
1秒前
4秒前
zho发布了新的文献求助30
4秒前
4秒前
ywang发布了新的文献求助10
4秒前
ZD小草完成签到 ,获得积分10
5秒前
健忘曼冬完成签到,获得积分10
6秒前
hkl1542发布了新的文献求助50
7秒前
8秒前
9秒前
KYN完成签到,获得积分10
10秒前
10秒前
桐桐应助叶未晞yi采纳,获得10
10秒前
10秒前
su发布了新的文献求助10
11秒前
123456789完成签到,获得积分10
13秒前
炙热的如柏完成签到,获得积分20
13秒前
14秒前
15秒前
HWei完成签到,获得积分10
15秒前
Ryan完成签到,获得积分10
15秒前
16秒前
Jzhang应助丙队长采纳,获得10
18秒前
19秒前
GXY发布了新的文献求助30
20秒前
Lucas应助专注秋尽采纳,获得10
20秒前
20秒前
754完成签到,获得积分10
20秒前
23秒前
学习猴发布了新的文献求助10
23秒前
充电宝应助炙热的如柏采纳,获得10
24秒前
所所应助qzaima采纳,获得10
24秒前
米兰达完成签到 ,获得积分0
25秒前
xg发布了新的文献求助10
27秒前
Loooong应助Ni采纳,获得10
28秒前
28秒前
WZ0904发布了新的文献求助10
28秒前
顾矜应助博ge采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824