亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCL-Classifier: CNN and LSTM based hybrid malware classifier for Internet of Things (IoT)

计算机科学 分类器(UML) 恶意软件 字节 人工智能 随机森林 特征提取 模式识别(心理学) 物联网 机器学习 数据挖掘 操作系统 万维网
作者
Muhammed Amin Abdullah,Yongbin Yu,Kwabena Adu,Yakubu Imrana,Xiangxiang Wang,Jingye Cai
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:142: 41-58 被引量:8
标识
DOI:10.1016/j.future.2022.12.034
摘要

This paper highlights a hybrid static classifier based on CNN and bidirectional LSTM for Malware classification tasks in the IoT. Our approach learns and takes note of the nature and complex patterns of the Byte and Assembly files represented in one-dimensional images to enable better feature extraction, and does not require any expertise. CNN is used for automatic feature selection and extraction. In addition, the extracted features are forwarded to the bidirectional LSTM for classification. Extensive experiments were conducted with the Microsoft Malware classification dataset and the IoT Malware dataset. The experimental results show that our HCL-Classifier achieves an average of 99.91% and 99.83%, respectively, outperforming traditional single-input state-of-the-art works. Moreover, the least performed classifier among the baseline models used in this work, such as Random Forest, achieved 97.66% accuracy. We attribute this to the nature of our 1D image representation. This study also discovered that the different files in the dataset contain specific features that differ from file to file, which we demonstrated visually and through experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
明理珩发布了新的文献求助10
8秒前
11秒前
15秒前
明理珩发布了新的文献求助10
16秒前
20秒前
明理珩发布了新的文献求助10
23秒前
彭于晏应助明理珩采纳,获得10
28秒前
步念发布了新的文献求助10
36秒前
39秒前
40秒前
41秒前
彩色不评完成签到,获得积分10
44秒前
明理珩发布了新的文献求助10
46秒前
彩色不评发布了新的文献求助10
47秒前
49秒前
49秒前
上官若男应助明理珩采纳,获得80
51秒前
传奇3应助明理珩采纳,获得30
51秒前
58秒前
1分钟前
超帅的开山完成签到 ,获得积分10
1分钟前
1分钟前
明理珩发布了新的文献求助30
1分钟前
1分钟前
小妮子完成签到,获得积分10
1分钟前
明理珩发布了新的文献求助80
1分钟前
fishss完成签到 ,获得积分0
1分钟前
Able完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
spinon发布了新的文献求助10
2分钟前
汤万天完成签到,获得积分10
2分钟前
SciGPT应助明理珩采纳,获得10
2分钟前
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
明理珩发布了新的文献求助10
3分钟前
FashionBoy应助明理珩采纳,获得10
3分钟前
spinon发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853492
捐赠科研通 4690132
什么是DOI,文献DOI怎么找? 2540639
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609