Gear Fault Diagnosis Under Variable Load Conditions Based on Acoustic Signals

鉴别器 计算机科学 分类器(UML) 时域 人工神经网络 断层(地质) 语音识别 人工智能 模式识别(心理学) 电信 计算机视觉 探测器 地质学 地震学
作者
Qiuyi Chen,Yong Yao,Gui Gui,Suixian Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (23): 22344-22355 被引量:2
标识
DOI:10.1109/jsen.2022.3214286
摘要

The health condition of gears has been a topic of study in the past few decades due to the importance of gears for the transmission system. In recent years, some studies have used acoustic signals for gear diagnosis, which can overcome the limitation of vibration signals through noncontact measurement by air-couple. Although many acoustic-based diagnosis (ABD) methods have achieved good diagnosis performance of gear in stable working conditions, these methods suffer from effectiveness loss as the change of working load condition in the actual industry causes the domain shift problem. To overcome the above shortcoming, a domain-adversarial neural network (DANN) with a temporal attention mechanism (TAM) and a high dropout mechanism (HDM) is proposed in this article, which uses the acoustic signal of gears as the input of the model to detect gear health condition. First, the confrontation between the feature extractor and the discriminator in DANN is used to extract domain-invariant features for solving the domain shift problem. Then TAM is introduced into the feature extractor in DANN to refine domain invariant features for further enhancing domain adaptation ability to improve the diagnostic performance. Finally, HDM is utilized to erase the neurons of the input of the classifier with a random high probability to enhance the generalization ability of the model for further improving the classification performance. The experimental results show that the proposed method is effective to solve the domain shift problem of acoustic signals under variable load conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
菠萝橙子完成签到,获得积分10
刚刚
wanci应助阿强采纳,获得10
刚刚
NexusExplorer应助shuang采纳,获得10
刚刚
岳凯完成签到 ,获得积分10
刚刚
yitai完成签到,获得积分10
1秒前
zhan完成签到 ,获得积分10
1秒前
土豆发布了新的文献求助10
1秒前
tutoutou完成签到,获得积分20
2秒前
汉堡包应助酷酷学采纳,获得10
2秒前
2秒前
旺仔女士完成签到,获得积分10
3秒前
刻苦谷兰关注了科研通微信公众号
3秒前
草莓奶冻发布了新的文献求助20
4秒前
4秒前
顾矜应助kk采纳,获得10
5秒前
平淡山柏应助扥会采纳,获得30
6秒前
6秒前
6秒前
宓希发布了新的文献求助30
6秒前
bc发布了新的文献求助10
6秒前
7秒前
李健的小迷弟应助riotzoov采纳,获得30
7秒前
Krstal完成签到 ,获得积分10
8秒前
8秒前
Hello应助热心市民小张采纳,获得10
9秒前
材料打工人完成签到 ,获得积分10
9秒前
大个应助MISAKA_16采纳,获得10
9秒前
SciGPT应助JamesTYD采纳,获得10
9秒前
xiaoguo发布了新的文献求助10
10秒前
11秒前
情怀应助合适台灯采纳,获得10
11秒前
Cool完成签到,获得积分10
12秒前
Lucas应助niefengyun采纳,获得10
14秒前
14秒前
14秒前
贺知书完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Ava应助duang采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110