A time-aware self-attention based neural network model for sequential recommendation

时间戳 计算机科学 嵌入 数据挖掘 编码器 协同过滤 人工智能 人工神经网络 机器学习 依赖关系(UML) 推荐系统 理论计算机科学 实时计算 操作系统
作者
Yihu Zhang,Bo Yang,Haodong Liu,Dongsheng Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109894-109894 被引量:9
标识
DOI:10.1016/j.asoc.2022.109894
摘要

Sequential recommendation is one of the hot research topics in recent years. Various sequential recommendation models have been proposed, of which Self-Attention (SA)-based models are shown to have state-of-the-art performance. However, most of the existing SA-based sequential recommendation models do not make use of temporal information, i.e., timestamps of user–item interactions, except for an initial attempt (Li et al., 2020). In this paper, we propose a Time-Aware Transformer for Sequential Recommendation (TAT4SRec), an SA-based neural network model which utilizes the temporal information and captures users’ preferences more precisely. TAT4SRec has two salient features: (1) TAT4SRec utilizes an encoder–decoder structure to model timestamps and interacted items separately and this structure appears to be a better way of making use of the temporal information. (2) in the proposed TAT4SRec, two different embedding modules are designed to transform continuous data (timestamps) and discrete data (item IDs) into embedding matrices respectively. Specifically, we propose a window function-based embedding module to preserve the continuous dependency contained in similar timestamps. Finally, extensive experiments demonstrate the effectiveness of the proposed TAT4SRec over various state-of-the-art MC/RNN/SA-based sequential recommendation models under several widely-used metrics. Furthermore, experiments are also performed to show the rationality of the different proposed structures and demonstrate the computation efficiency of TAT4SRec. The promising experimental results make it possible to apply TAT4SRec in various online applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张文懿发布了新的文献求助10
2秒前
YapengWang发布了新的文献求助10
2秒前
yuan发布了新的文献求助20
2秒前
tuanheqi发布了新的文献求助20
2秒前
yinxx完成签到,获得积分10
3秒前
klpkyx发布了新的文献求助10
3秒前
安静黄豆发布了新的文献求助10
3秒前
梦红尘完成签到,获得积分10
3秒前
绿海发布了新的文献求助30
4秒前
4秒前
jiangmingjiao完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
阳光的衫完成签到,获得积分10
5秒前
shatang发布了新的文献求助10
6秒前
谦让羽毛完成签到,获得积分20
6秒前
pipi发布了新的文献求助10
7秒前
zhaopeipei完成签到,获得积分10
8秒前
8秒前
9秒前
jiangmingjiao发布了新的文献求助10
9秒前
yang发布了新的文献求助10
10秒前
abc123完成签到,获得积分20
10秒前
klpkyx完成签到,获得积分20
11秒前
顺利毕业发布了新的文献求助10
12秒前
所所应助野性的鹭洋采纳,获得10
12秒前
超帅青烟完成签到,获得积分10
14秒前
15秒前
新城吴发布了新的文献求助10
16秒前
彭于晏应助张文懿采纳,获得10
18秒前
21秒前
abc123发布了新的文献求助10
21秒前
Janey发布了新的文献求助10
21秒前
小二郎应助遇见馅儿饼采纳,获得10
22秒前
轻松的雪旋完成签到,获得积分10
22秒前
23秒前
整齐晓筠完成签到 ,获得积分10
24秒前
丘比特应助糖糖糖唐采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020