A time-aware self-attention based neural network model for sequential recommendation

时间戳 计算机科学 嵌入 数据挖掘 编码器 协同过滤 人工智能 人工神经网络 机器学习 依赖关系(UML) 推荐系统 理论计算机科学 实时计算 操作系统
作者
Yihu Zhang,Bo Yang,Haodong Liu,Dongsheng Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:133: 109894-109894 被引量:9
标识
DOI:10.1016/j.asoc.2022.109894
摘要

Sequential recommendation is one of the hot research topics in recent years. Various sequential recommendation models have been proposed, of which Self-Attention (SA)-based models are shown to have state-of-the-art performance. However, most of the existing SA-based sequential recommendation models do not make use of temporal information, i.e., timestamps of user–item interactions, except for an initial attempt (Li et al., 2020). In this paper, we propose a Time-Aware Transformer for Sequential Recommendation (TAT4SRec), an SA-based neural network model which utilizes the temporal information and captures users’ preferences more precisely. TAT4SRec has two salient features: (1) TAT4SRec utilizes an encoder–decoder structure to model timestamps and interacted items separately and this structure appears to be a better way of making use of the temporal information. (2) in the proposed TAT4SRec, two different embedding modules are designed to transform continuous data (timestamps) and discrete data (item IDs) into embedding matrices respectively. Specifically, we propose a window function-based embedding module to preserve the continuous dependency contained in similar timestamps. Finally, extensive experiments demonstrate the effectiveness of the proposed TAT4SRec over various state-of-the-art MC/RNN/SA-based sequential recommendation models under several widely-used metrics. Furthermore, experiments are also performed to show the rationality of the different proposed structures and demonstrate the computation efficiency of TAT4SRec. The promising experimental results make it possible to apply TAT4SRec in various online applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟发布了新的文献求助80
3秒前
橘子猫发布了新的文献求助10
4秒前
wmj7421完成签到,获得积分20
5秒前
lit完成签到,获得积分20
6秒前
魏你大爷发布了新的文献求助10
7秒前
大模型应助我不是BOB采纳,获得10
9秒前
10秒前
bkagyin应助一丁雨采纳,获得10
11秒前
所所应助橘子猫采纳,获得10
12秒前
12秒前
13秒前
RuiBigHead发布了新的文献求助10
13秒前
王晓曼发布了新的文献求助10
14秒前
14秒前
Echo发布了新的文献求助10
15秒前
16秒前
细草微风岸完成签到 ,获得积分10
19秒前
lit发布了新的文献求助30
19秒前
19秒前
19秒前
20秒前
annie发布了新的文献求助10
21秒前
yangjinru完成签到 ,获得积分10
22秒前
仁爱芷波发布了新的文献求助10
23秒前
小二郎应助夜柒七采纳,获得10
24秒前
852应助迟迟采纳,获得10
25秒前
25秒前
三新荞应助彬墩墩采纳,获得10
26秒前
王晓曼完成签到,获得积分10
29秒前
Kuma关注了科研通微信公众号
30秒前
飞儿随缘发布了新的文献求助10
30秒前
魏你大爷发布了新的文献求助10
31秒前
Yiy完成签到 ,获得积分0
31秒前
sinber完成签到 ,获得积分10
32秒前
善学以致用应助仁爱芷波采纳,获得10
32秒前
lucky应助cs采纳,获得10
35秒前
35秒前
调调单单发布了新的文献求助10
35秒前
35秒前
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738