A time-aware self-attention based neural network model for sequential recommendation

时间戳 计算机科学 嵌入 数据挖掘 编码器 协同过滤 人工智能 人工神经网络 机器学习 依赖关系(UML) 推荐系统 理论计算机科学 实时计算 操作系统
作者
Yihu Zhang,Bo Yang,Haodong Liu,Dongsheng Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:133: 109894-109894 被引量:9
标识
DOI:10.1016/j.asoc.2022.109894
摘要

Sequential recommendation is one of the hot research topics in recent years. Various sequential recommendation models have been proposed, of which Self-Attention (SA)-based models are shown to have state-of-the-art performance. However, most of the existing SA-based sequential recommendation models do not make use of temporal information, i.e., timestamps of user–item interactions, except for an initial attempt (Li et al., 2020). In this paper, we propose a Time-Aware Transformer for Sequential Recommendation (TAT4SRec), an SA-based neural network model which utilizes the temporal information and captures users’ preferences more precisely. TAT4SRec has two salient features: (1) TAT4SRec utilizes an encoder–decoder structure to model timestamps and interacted items separately and this structure appears to be a better way of making use of the temporal information. (2) in the proposed TAT4SRec, two different embedding modules are designed to transform continuous data (timestamps) and discrete data (item IDs) into embedding matrices respectively. Specifically, we propose a window function-based embedding module to preserve the continuous dependency contained in similar timestamps. Finally, extensive experiments demonstrate the effectiveness of the proposed TAT4SRec over various state-of-the-art MC/RNN/SA-based sequential recommendation models under several widely-used metrics. Furthermore, experiments are also performed to show the rationality of the different proposed structures and demonstrate the computation efficiency of TAT4SRec. The promising experimental results make it possible to apply TAT4SRec in various online applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的紫伊完成签到,获得积分10
刚刚
春风得意完成签到,获得积分10
刚刚
爱你呃不可能完成签到,获得积分10
刚刚
WSY完成签到,获得积分20
刚刚
666星爷留下了新的社区评论
1秒前
风吹似夏完成签到,获得积分10
1秒前
1秒前
李健应助crr采纳,获得10
1秒前
tao完成签到,获得积分20
2秒前
淡淡的雪完成签到,获得积分10
2秒前
2秒前
2秒前
yitang发布了新的文献求助10
3秒前
涛浪发布了新的文献求助10
3秒前
4秒前
4秒前
乔治韦斯莱完成签到 ,获得积分10
5秒前
Jenny应助圈圈采纳,获得10
5秒前
5秒前
呆萌完成签到 ,获得积分10
5秒前
啾啾完成签到,获得积分10
5秒前
脑洞疼应助hhy采纳,获得10
6秒前
Zhong发布了新的文献求助10
8秒前
8秒前
神仙也抠脚丫完成签到,获得积分10
8秒前
8秒前
9秒前
岩中花树完成签到,获得积分10
9秒前
9秒前
科研小白完成签到,获得积分10
10秒前
10秒前
追梦发布了新的文献求助10
10秒前
10秒前
豆包完成签到,获得积分10
10秒前
怕孤单的耳机完成签到,获得积分10
10秒前
成就梦松发布了新的文献求助10
10秒前
Donnie发布了新的文献求助10
11秒前
scc完成签到,获得积分10
11秒前
呼叫554发布了新的文献求助30
11秒前
Ava应助向北游采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672