Low-Rank Tensor Regularized Views Recovery for Incomplete Multiview Clustering

初始化 缺少数据 计算机科学 聚类分析 张量(固有定义) 子空间拓扑 代表(政治) 人工智能 秩(图论) 利用 数据挖掘 相似性(几何) 矩阵范数 模式识别(心理学) 机器学习 数学 图像(数学) 物理 组合数学 政治 特征向量 量子力学 计算机安全 程序设计语言 法学 纯数学 政治学
作者
Chao Zhang,Huaxiong Li,Caihua Chen,Xiuyi Jia,Chunlin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9312-9324 被引量:30
标识
DOI:10.1109/tnnls.2022.3232538
摘要

In real applications, it is often that the collected multiview data contain missing views. Most existing incomplete multiview clustering (IMVC) methods cannot fully utilize the underlying information of missing data or sufficiently explore the consistent and complementary characteristics. In this article, we propose a novel Low-rAnk Tensor regularized viEws Recovery (LATER) method for IMVC, which jointly reconstructs and utilizes the missing views and learns multilevel graphs for comprehensive similarity discovery in a unified model. The missing views are recovered from a common latent representation, and the recovered views conversely improve the learning of shared patterns. Based on the shared subspace representations and recovered complete multiview data, the multilevel graphs are learned by self-representation to fully exploit the consistent and complementary information among views. Besides, a tensor nuclear norm regularizer is introduced to pursue the global low-rank property and explore the interview correlations. An alternating direction minimization algorithm is presented to optimize the proposed model. Moreover, a new initialization method is proposed to promote the effectiveness of our method for latent representation learning and missing data recovery. Extensive experiments demonstrate that our method outperforms the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐桉完成签到 ,获得积分10
刚刚
cathy完成签到 ,获得积分10
1秒前
大有阳光完成签到,获得积分10
1秒前
36456657应助卫生纸采纳,获得10
2秒前
兰格格完成签到,获得积分10
2秒前
2秒前
3秒前
丰盛的煎饼应助凝子老师采纳,获得10
4秒前
姜小猪完成签到,获得积分10
5秒前
冬眠完成签到 ,获得积分10
6秒前
kaye完成签到 ,获得积分10
7秒前
张张完成签到,获得积分10
9秒前
小巧念寒发布了新的文献求助10
9秒前
yanmu2010完成签到,获得积分10
9秒前
通~发布了新的文献求助10
10秒前
11秒前
小白应助SUS采纳,获得10
11秒前
lipengjiajun应助xiangxiang采纳,获得10
12秒前
田様应助caoyy采纳,获得10
12秒前
biubiu发布了新的文献求助10
12秒前
钰LM完成签到,获得积分10
12秒前
13秒前
wangyun完成签到,获得积分10
15秒前
lixm发布了新的文献求助10
19秒前
21秒前
研友_VZG7GZ应助务实的犀牛采纳,获得10
22秒前
23秒前
狂野代桃发布了新的文献求助10
26秒前
加菲丰丰应助Anquan采纳,获得30
26秒前
biubiu完成签到,获得积分10
27秒前
茶茶发布了新的文献求助10
27秒前
29秒前
酷波er应助健忘捕采纳,获得10
29秒前
李健应助irisjlj采纳,获得10
31秒前
001完成签到 ,获得积分20
32秒前
sgjj33完成签到,获得积分10
34秒前
情怀应助凝子老师采纳,获得10
35秒前
迪丽盐巴完成签到,获得积分10
36秒前
40秒前
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851