医学
冲程(发动机)
灌注
磁共振弥散成像
磁共振成像
有效扩散系数
麦克内马尔试验
灌注扫描
放射科
核医学
数学
机械工程
统计
工程类
作者
Yannan Yu,Søren Christensen,Jiahong Ouyang,Fabien Scalzo,David S. Liebeskind,Maarten G. Lansberg,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Radiology
[Radiological Society of North America]
日期:2022-12-06
卷期号:307 (1)
被引量:18
标识
DOI:10.1148/radiol.220882
摘要
Background Perfusion imaging is important to identify a target mismatch in stroke but requires contrast agents and postprocessing software. Purpose To use a deep learning model to predict the hypoperfusion lesion in stroke and identify patients with a target mismatch profile from diffusion-weighted imaging (DWI) and clinical information alone, using perfusion MRI as the reference standard. Materials and Methods Imaging data sets of patients with acute ischemic stroke with baseline perfusion MRI and DWI were retrospectively reviewed from multicenter data available from 2008 to 2019 (Imaging Collaterals in Acute Stroke, Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 2, and University of California, Los Angeles stroke registry). For perfusion MRI, rapid processing of perfusion and diffusion software automatically segmented the hypoperfusion lesion (time to maximum, ≥6 seconds) and ischemic core (apparent diffusion coefficient [ADC], ≤620 × 10
科研通智能强力驱动
Strongly Powered by AbleSci AI