Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images

计算机科学 分割 人工智能 编码器 变压器 卷积神经网络 尺度空间分割 基于分割的对象分类 图像分割 模式识别(心理学) 计算机视觉 工程类 电压 操作系统 电气工程
作者
Ali Hatamizadeh,Vishwesh Nath,Yucheng Tang,Dong Yang,Holger R. Roth,Daguang Xu
出处
期刊:Cornell University - arXiv 被引量:13
标识
DOI:10.48550/arxiv.2201.01266
摘要

Semantic segmentation of brain tumors is a fundamental medical image analysis task involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient and successively studying the progression of the malignant entity. In recent years, Fully Convolutional Neural Networks (FCNNs) approaches have become the de facto standard for 3D medical image segmentation. The popular "U-shaped" network architecture has achieved state-of-the-art performance benchmarks on different 2D and 3D semantic segmentation tasks and across various imaging modalities. However, due to the limited kernel size of convolution layers in FCNNs, their performance of modeling long-range information is sub-optimal, and this can lead to deficiencies in the segmentation of tumors with variable sizes. On the other hand, transformer models have demonstrated excellent capabilities in capturing such long-range information in multiple domains, including natural language processing and computer vision. Inspired by the success of vision transformers and their variants, we propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR). Specifically, the task of 3D brain tumor semantic segmentation is reformulated as a sequence to sequence prediction problem wherein multi-modal input data is projected into a 1D sequence of embedding and used as an input to a hierarchical Swin transformer as the encoder. The swin transformer encoder extracts features at five different resolutions by utilizing shifted windows for computing self-attention and is connected to an FCNN-based decoder at each resolution via skip connections. We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase. Code: https://monai.io/research/swin-unetr
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代皓轩完成签到,获得积分10
1秒前
zhaole发布了新的文献求助10
2秒前
3秒前
远方发布了新的文献求助10
4秒前
贰鸟应助大喜子采纳,获得10
4秒前
完美世界应助大喜子采纳,获得10
4秒前
共享精神应助ggbond采纳,获得10
4秒前
笨笨善若发布了新的文献求助10
5秒前
小蘑菇应助呵呵采纳,获得10
5秒前
6秒前
6秒前
6秒前
fa发布了新的文献求助10
7秒前
魔幻柜子应助Ari_Kun采纳,获得10
8秒前
吃水果的老虎完成签到,获得积分10
8秒前
而发的完成签到,获得积分10
9秒前
活力立诚完成签到,获得积分10
9秒前
聪聪发布了新的文献求助10
10秒前
tumbler完成签到 ,获得积分10
10秒前
KAKAZhang发布了新的文献求助10
10秒前
11秒前
11秒前
ding应助梨儿采纳,获得10
12秒前
西鱼发布了新的文献求助10
12秒前
Hello应助yy采纳,获得10
12秒前
13秒前
爆炸吧丶现充完成签到,获得积分10
13秒前
CipherSage应助痴情的小懒虫采纳,获得10
13秒前
在水一方应助白方明采纳,获得10
13秒前
13秒前
14秒前
隐形曼青应助远方采纳,获得10
14秒前
Y.完成签到,获得积分10
15秒前
科研通AI5应助雨碎寒江采纳,获得10
15秒前
15秒前
落寞砖家发布了新的文献求助10
16秒前
呵呵发布了新的文献求助10
17秒前
aczqay完成签到,获得积分10
17秒前
17秒前
ggbond发布了新的文献求助10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113