DNN Real-Time Collaborative Inference Acceleration with Mobile Edge Computing

计算机科学 推论 延迟(音频) 分布式计算 分拆(数论) GSM演进的增强数据速率 边缘设备 云计算 移动设备 背景(考古学) 近似推理 人工智能 组合数学 古生物学 操作系统 生物 电信 数学
作者
Run Yang,Yan Li,Hui He,Weizhe Zhang
标识
DOI:10.1109/ijcnn55064.2022.9892582
摘要

The collaborative inference approach splits the Deep Neural Networks (DNNs) model into two parts. It runs collaboratively on the end device and cloud server to minimize inference latency and protect data privacy, especially in the 5G era. The scheme of DNN model partitioning depends on the network bandwidth size. However, in the context of dynamic mobile networks, resource-constrained devices cannot efficiently execute complex model partitioning algorithms to obtain optimal partitioning in real-time. In this paper, to overcome this challenge, we first formulate the model partitioning problem as a Min-cut problem to seek the optimal partition. Second, we propose a Collaborative Inference method based on model Compression named CIC. CIC enhances the efficiency of the execution of model partitioning algorithms on resource-constrained end devices by reducing the algorithm's complexity. CIC generates a splitting model based on the inherent characteristics of the DNN model and the platform resources. The splitting models are independent of the network environment, generated offline, and constantly used in the current environment. CIC has excellent compressibility, and even DNN models with hundreds of layers can be rapidly partitioned on resource-constrained devices. Experimental results show that our method is significantly more effective than existing solutions, speeding up model partitioning decision time by up to 100x, reducing inference latency by up to 2.6x, and increasing throughput by up to 3.3x in the best case.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙鹿鹿的猫完成签到,获得积分10
刚刚
刚刚
边港洋发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
笨男孩发布了新的文献求助10
5秒前
6秒前
6秒前
wanghao发布了新的文献求助10
6秒前
陈湫完成签到,获得积分10
7秒前
田様应助等待的寒松采纳,获得10
7秒前
害怕的白竹完成签到,获得积分10
8秒前
随心完成签到,获得积分10
8秒前
怕孤单的嚣完成签到,获得积分20
8秒前
lcxw1224完成签到,获得积分10
8秒前
9秒前
长常九久发布了新的文献求助10
10秒前
15503116087发布了新的文献求助10
10秒前
大个应助初之采纳,获得10
11秒前
te发布了新的文献求助10
11秒前
边港洋完成签到,获得积分10
13秒前
13秒前
凤羽发布了新的文献求助10
14秒前
灵巧听露发布了新的文献求助10
14秒前
可爱的函函应助猫猫无敌采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
爆米花应助刁弘睿采纳,获得10
18秒前
18秒前
18秒前
缥缈海云完成签到,获得积分10
18秒前
19秒前
斯文败类应助沙场秋点兵采纳,获得10
20秒前
123完成签到,获得积分10
20秒前
21秒前
无辜问玉发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425