Hyperspectral Remote Sensing Image Synthesis Based on Implicit Neural Spectral Mixing Models

高光谱成像 全光谱成像 计算机科学 亚像素渲染 人工智能 像素 光谱特征 遥感 噪音(视频) 计算机视觉 成像光谱仪 成像光谱学 模式识别(心理学) 分光计 图像(数学) 物理 地质学 量子力学
作者
Liqin Liu,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:12
标识
DOI:10.1109/tgrs.2022.3232705
摘要

Hyperspectral image (HSI) synthesis, as an emerging research topic, is of great value in overcoming sensor limitations and achieving low-cost acquisition of high-resolution remote sensing HSIs. However, the linear spectral mixing model used in recent studies oversimplifies the real-world hyperspectral imaging process, making it difficult to effectively model the imaging noise and multiple reflections of the object spectrum. As a prerequisite for hyperspectral data synthesis, accurate modeling of nonlinear spectral mixtures has long been a challenge. Considering the above difficulties, we propose a novel method for modeling nonlinear spectral mixtures based on implicit neural representations (INRs) in this article. The proposed method learns from INR and adaptively implements different mixture models for each pixel according to their spectral signature and surrounding environment. Based on the above neural mixing model, we also propose a new method for HSI synthesis. Given an RGB image as input, our method can generate an accurate and physically meaningful HSI. As a set of by-products, our method can also generate subpixel-level spectral abundance as well as the solar atmosphere signature. The whole framework is trained end-to-end in a self-supervised manner. We constructed a new dataset for HSI synthesis based on a wide range of Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. Our method achieves a mean peak signal-to-noise ratio (MPSNR) of 52.36 dB and outperforms other state-of-the-art hyperspectral synthesis methods. Finally, our method shows great benefits to downstream data-driven applications. With the HSIs and abundance directly generated from low-cost RGB images, the proposed method improves the accuracy of HSI classification tasks by a large margin, particularly for those with limited training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助静春采纳,获得10
刚刚
Eillen完成签到,获得积分10
刚刚
Wang发布了新的文献求助10
刚刚
平淡的懿轩完成签到,获得积分10
刚刚
鳗鱼千雁发布了新的文献求助10
刚刚
TT发布了新的文献求助10
1秒前
winwin完成签到,获得积分10
2秒前
remake441发布了新的文献求助10
2秒前
威威111关注了科研通微信公众号
2秒前
文静的柠檬完成签到,获得积分10
3秒前
一个奎发布了新的文献求助10
3秒前
4秒前
奋斗的雪曼完成签到,获得积分10
4秒前
4秒前
活力安南发布了新的文献求助50
5秒前
狗狗碎碎完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
自然的霸完成签到,获得积分10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
cyb发布了新的文献求助10
8秒前
共享精神应助科研通管家采纳,获得50
8秒前
8秒前
Wind应助科研通管家采纳,获得10
8秒前
hans应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
Ming完成签到,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
老小孩完成签到 ,获得积分10
8秒前
关关过应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545750
求助须知:如何正确求助?哪些是违规求助? 4631794
关于积分的说明 14622444
捐赠科研通 4573504
什么是DOI,文献DOI怎么找? 2507566
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455544