Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion

土壤盐分 盐度 归一化差异植被指数 环境科学 VNIR公司 土壤水分 土壤科学 土工试验 决定系数 线性回归 多元统计 水文学(农业) 遥感 数学 统计 气候变化 地质学 海洋学 岩土工程 高光谱成像
作者
Hazem T. Abd El-Hamid,Fahad Alshehri,Ahmed El-Zeiny,Hoda Nour-Eldin
出处
期刊:Marine Pollution Bulletin [Elsevier]
卷期号:187: 114555-114555 被引量:13
标识
DOI:10.1016/j.marpolbul.2022.114555
摘要

Soils along the Egyptian coast are vulnerable to environmental degradation and soil salinity problems. The main objective of this study is to identify and rapidly predict salt affected soils using remote sensing data and multivariate statistical analysis. To achieve this objective, the Operational Land Imager 8 (OLI) of Landsat imagery acquired in March 2022 was processed through the Maximum Likelihood classifier to assess Landscape features and to produce Normalized difference salinity index (NDSI) and normalized difference vegetation index (NDVI). Water and soil samples were collected from 13 field sites as ground truth data and to investigate representative physical and chemical properties. Linear regression model was used to predict soil salinity while soil parameters were mapped using Inverse Distance Weight (IDW) in ArcGIS 10.5. In order to explore the soil salinity content using VNIR-SWIR spectra, this work investigated the potential of Partial least squares regression (PLS regression) and SVM (Support vector machine). For simulating salinity in the investigated area, a total number of 65 different sites were identified considering that almost 75 % (50 sites) were used to develop the model and 25 % (15 sites) for validation of the established model. The results indicated that EC levels of water samples are not suitable for irrigation (> 3 mS/cm). Majority of the collected soil samples represent saline-alkaline soils. NDSI ranged from -0.83 to 0.57 with mean of -0.25. Based on the variance of components, 90 % of data were obtained from the first three PCA. The PLS model's R2 score of 0.763 and extremely low p value indicates how well it predicts soil salinity. SVM model R2, on the other hand, is 0.719. Further, Ca++ and Mg++ are the main significant parameters selected in the predicted model. This shows that remote sensing data and multivariate analysis are very important tools to map spatial variation and predict soil salinity. The developed model for salinity considered both the spectral retrieved parameters and lab analyses of cations giving higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leooooo完成签到,获得积分10
刚刚
林夕水函完成签到,获得积分10
1秒前
菠菜发布了新的文献求助10
1秒前
CodeCraft应助浅呀呀呀采纳,获得10
1秒前
1秒前
oou完成签到,获得积分10
1秒前
1秒前
舒适的涑发布了新的文献求助10
1秒前
美丽的凌蝶完成签到,获得积分10
2秒前
姜彦乔发布了新的文献求助30
2秒前
核桃发布了新的文献求助10
2秒前
2秒前
2秒前
麦克尔发布了新的文献求助20
3秒前
3秒前
Marts发布了新的文献求助10
4秒前
CJ发布了新的文献求助10
4秒前
安可完成签到 ,获得积分10
4秒前
spirit发布了新的文献求助10
6秒前
tRNA完成签到,获得积分10
6秒前
2042193875发布了新的文献求助10
6秒前
陈柚瑾完成签到,获得积分10
6秒前
龙昌艳关注了科研通微信公众号
7秒前
8秒前
认真映寒完成签到,获得积分20
8秒前
还在路上完成签到,获得积分20
9秒前
小张在进步给小张在进步的求助进行了留言
9秒前
犹豫的晓兰完成签到,获得积分10
9秒前
小杭76应助Rex采纳,获得10
10秒前
11秒前
顾矜应助yongziwu采纳,获得10
11秒前
Marts完成签到,获得积分10
11秒前
ASHhan111完成签到,获得积分10
11秒前
11秒前
Hello应助3羟酪胺采纳,获得10
12秒前
西瓜汽水完成签到,获得积分10
12秒前
16秒前
牧妙芹发布了新的文献求助30
17秒前
17秒前
wxiao完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384