已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion

土壤盐分 盐度 归一化差异植被指数 环境科学 VNIR公司 土壤水分 土壤科学 土工试验 决定系数 线性回归 多元统计 水文学(农业) 遥感 数学 统计 气候变化 地质学 海洋学 岩土工程 高光谱成像
作者
Hazem T. Abd El-Hamid,Fahad Alshehri,Ahmed El-Zeiny,Hoda Nour-Eldin
出处
期刊:Marine Pollution Bulletin [Elsevier]
卷期号:187: 114555-114555 被引量:13
标识
DOI:10.1016/j.marpolbul.2022.114555
摘要

Soils along the Egyptian coast are vulnerable to environmental degradation and soil salinity problems. The main objective of this study is to identify and rapidly predict salt affected soils using remote sensing data and multivariate statistical analysis. To achieve this objective, the Operational Land Imager 8 (OLI) of Landsat imagery acquired in March 2022 was processed through the Maximum Likelihood classifier to assess Landscape features and to produce Normalized difference salinity index (NDSI) and normalized difference vegetation index (NDVI). Water and soil samples were collected from 13 field sites as ground truth data and to investigate representative physical and chemical properties. Linear regression model was used to predict soil salinity while soil parameters were mapped using Inverse Distance Weight (IDW) in ArcGIS 10.5. In order to explore the soil salinity content using VNIR-SWIR spectra, this work investigated the potential of Partial least squares regression (PLS regression) and SVM (Support vector machine). For simulating salinity in the investigated area, a total number of 65 different sites were identified considering that almost 75 % (50 sites) were used to develop the model and 25 % (15 sites) for validation of the established model. The results indicated that EC levels of water samples are not suitable for irrigation (> 3 mS/cm). Majority of the collected soil samples represent saline-alkaline soils. NDSI ranged from -0.83 to 0.57 with mean of -0.25. Based on the variance of components, 90 % of data were obtained from the first three PCA. The PLS model's R2 score of 0.763 and extremely low p value indicates how well it predicts soil salinity. SVM model R2, on the other hand, is 0.719. Further, Ca++ and Mg++ are the main significant parameters selected in the predicted model. This shows that remote sensing data and multivariate analysis are very important tools to map spatial variation and predict soil salinity. The developed model for salinity considered both the spectral retrieved parameters and lab analyses of cations giving higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
筱xiao完成签到,获得积分10
1秒前
懒癌晚期发布了新的文献求助10
1秒前
2秒前
贺贺完成签到,获得积分10
2秒前
huiiii8完成签到,获得积分10
3秒前
3秒前
顾矜应助佳期采纳,获得10
4秒前
5秒前
6秒前
LL发布了新的文献求助30
7秒前
zuihaodewomen完成签到 ,获得积分10
7秒前
yikiheting完成签到,获得积分10
8秒前
LU完成签到 ,获得积分10
8秒前
善学以致用应助应急食品采纳,获得10
10秒前
yofluenza发布了新的文献求助10
11秒前
12秒前
13秒前
烟花应助懒癌晚期采纳,获得10
13秒前
星辰大海应助杨德帅采纳,获得10
15秒前
不倦发布了新的文献求助10
17秒前
LU关注了科研通微信公众号
17秒前
lvlv完成签到,获得积分10
19秒前
19秒前
烂漫的易真完成签到,获得积分10
19秒前
21秒前
科研通AI6应助swy212采纳,获得10
22秒前
001完成签到,获得积分10
23秒前
24秒前
橙子发布了新的文献求助10
27秒前
30秒前
懒癌晚期发布了新的文献求助10
31秒前
卡布叻完成签到 ,获得积分10
31秒前
31秒前
ddddddddddd发布了新的文献求助10
32秒前
Nefelibata完成签到,获得积分10
33秒前
35秒前
赘婿应助优雅颜采纳,获得10
36秒前
36秒前
狗头发布了新的文献求助10
36秒前
小张同学完成签到,获得积分10
37秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485