Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion

土壤盐分 盐度 归一化差异植被指数 环境科学 VNIR公司 土壤水分 土壤科学 土工试验 决定系数 线性回归 多元统计 水文学(农业) 遥感 数学 统计 气候变化 地质学 海洋学 岩土工程 高光谱成像
作者
Hazem T. Abd El-Hamid,Fahad Alshehri,Ahmed El-Zeiny,Hoda Nour-Eldin
出处
期刊:Marine Pollution Bulletin [Elsevier]
卷期号:187: 114555-114555 被引量:6
标识
DOI:10.1016/j.marpolbul.2022.114555
摘要

Soils along the Egyptian coast are vulnerable to environmental degradation and soil salinity problems. The main objective of this study is to identify and rapidly predict salt affected soils using remote sensing data and multivariate statistical analysis. To achieve this objective, the Operational Land Imager 8 (OLI) of Landsat imagery acquired in March 2022 was processed through the Maximum Likelihood classifier to assess Landscape features and to produce Normalized difference salinity index (NDSI) and normalized difference vegetation index (NDVI). Water and soil samples were collected from 13 field sites as ground truth data and to investigate representative physical and chemical properties. Linear regression model was used to predict soil salinity while soil parameters were mapped using Inverse Distance Weight (IDW) in ArcGIS 10.5. In order to explore the soil salinity content using VNIR-SWIR spectra, this work investigated the potential of Partial least squares regression (PLS regression) and SVM (Support vector machine). For simulating salinity in the investigated area, a total number of 65 different sites were identified considering that almost 75 % (50 sites) were used to develop the model and 25 % (15 sites) for validation of the established model. The results indicated that EC levels of water samples are not suitable for irrigation (> 3 mS/cm). Majority of the collected soil samples represent saline-alkaline soils. NDSI ranged from -0.83 to 0.57 with mean of -0.25. Based on the variance of components, 90 % of data were obtained from the first three PCA. The PLS model's R2 score of 0.763 and extremely low p value indicates how well it predicts soil salinity. SVM model R2, on the other hand, is 0.719. Further, Ca++ and Mg++ are the main significant parameters selected in the predicted model. This shows that remote sensing data and multivariate analysis are very important tools to map spatial variation and predict soil salinity. The developed model for salinity considered both the spectral retrieved parameters and lab analyses of cations giving higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力沛萍发布了新的文献求助10
刚刚
竹筏过海应助张聪采纳,获得30
1秒前
鹿雅彤完成签到 ,获得积分10
2秒前
ferritin发布了新的文献求助10
2秒前
2秒前
purple发布了新的文献求助10
3秒前
Yziii举报小马求助涉嫌违规
3秒前
Alerina完成签到,获得积分10
3秒前
4秒前
4秒前
雷含灵完成签到,获得积分20
6秒前
6秒前
7秒前
大气沛槐完成签到,获得积分10
8秒前
矮小的万声完成签到 ,获得积分10
8秒前
9秒前
9秒前
小赵完成签到,获得积分10
9秒前
9秒前
hh完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
大气沛容完成签到,获得积分10
11秒前
yy2023发布了新的文献求助10
11秒前
12秒前
鹿雅彤发布了新的文献求助10
13秒前
幽默雨完成签到,获得积分10
14秒前
1MENINA1完成签到 ,获得积分10
14秒前
李健的小迷弟应助小赵采纳,获得10
14秒前
阿腾发布了新的文献求助10
14秒前
suolong完成签到,获得积分10
15秒前
Liu Xiaojing发布了新的文献求助30
16秒前
16秒前
CipherSage应助可耐的Gamma采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180636
求助须知:如何正确求助?哪些是违规求助? 2830962
关于积分的说明 7981889
捐赠科研通 2492629
什么是DOI,文献DOI怎么找? 1329721
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954