Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion

土壤盐分 盐度 归一化差异植被指数 环境科学 VNIR公司 土壤水分 土壤科学 土工试验 决定系数 线性回归 多元统计 水文学(农业) 遥感 数学 统计 气候变化 地质学 海洋学 岩土工程 高光谱成像
作者
Hazem T. Abd El-Hamid,Fahad Alshehri,Ahmed El-Zeiny,Hoda Nour-Eldin
出处
期刊:Marine Pollution Bulletin [Elsevier BV]
卷期号:187: 114555-114555 被引量:13
标识
DOI:10.1016/j.marpolbul.2022.114555
摘要

Soils along the Egyptian coast are vulnerable to environmental degradation and soil salinity problems. The main objective of this study is to identify and rapidly predict salt affected soils using remote sensing data and multivariate statistical analysis. To achieve this objective, the Operational Land Imager 8 (OLI) of Landsat imagery acquired in March 2022 was processed through the Maximum Likelihood classifier to assess Landscape features and to produce Normalized difference salinity index (NDSI) and normalized difference vegetation index (NDVI). Water and soil samples were collected from 13 field sites as ground truth data and to investigate representative physical and chemical properties. Linear regression model was used to predict soil salinity while soil parameters were mapped using Inverse Distance Weight (IDW) in ArcGIS 10.5. In order to explore the soil salinity content using VNIR-SWIR spectra, this work investigated the potential of Partial least squares regression (PLS regression) and SVM (Support vector machine). For simulating salinity in the investigated area, a total number of 65 different sites were identified considering that almost 75 % (50 sites) were used to develop the model and 25 % (15 sites) for validation of the established model. The results indicated that EC levels of water samples are not suitable for irrigation (> 3 mS/cm). Majority of the collected soil samples represent saline-alkaline soils. NDSI ranged from -0.83 to 0.57 with mean of -0.25. Based on the variance of components, 90 % of data were obtained from the first three PCA. The PLS model's R2 score of 0.763 and extremely low p value indicates how well it predicts soil salinity. SVM model R2, on the other hand, is 0.719. Further, Ca++ and Mg++ are the main significant parameters selected in the predicted model. This shows that remote sensing data and multivariate analysis are very important tools to map spatial variation and predict soil salinity. The developed model for salinity considered both the spectral retrieved parameters and lab analyses of cations giving higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xie69完成签到,获得积分10
1秒前
2秒前
2秒前
追风筝的人完成签到,获得积分10
3秒前
大个应助Huang采纳,获得10
3秒前
朱z完成签到,获得积分10
3秒前
栗子完成签到,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
cyndi完成签到,获得积分10
4秒前
飞0802完成签到,获得积分10
4秒前
April完成签到,获得积分10
4秒前
无限师完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
靓丽的熠彤完成签到,获得积分10
5秒前
乐观冥幽完成签到,获得积分10
5秒前
palace完成签到 ,获得积分10
5秒前
呆呆是一条鱼完成签到,获得积分10
6秒前
yangyu完成签到,获得积分10
7秒前
来日可追应助小小采纳,获得10
7秒前
elysia完成签到,获得积分10
7秒前
ug完成签到,获得积分10
8秒前
所所应助1256采纳,获得10
9秒前
10秒前
科研通AI6应助TiAmo采纳,获得10
10秒前
淡然柚子发布了新的文献求助10
11秒前
11秒前
星星完成签到,获得积分10
13秒前
追风少年完成签到 ,获得积分10
13秒前
Simpson完成签到 ,获得积分0
13秒前
kks569完成签到,获得积分10
13秒前
二十三月之夜完成签到,获得积分10
13秒前
TanXu发布了新的文献求助30
14秒前
xiao完成签到,获得积分20
14秒前
15秒前
Kelly完成签到,获得积分10
15秒前
山鲁佐德发布了新的文献求助10
15秒前
呼噜呼噜小完成签到,获得积分10
15秒前
要减肥的chao完成签到,获得积分10
16秒前
leishenwang完成签到,获得积分10
16秒前
若安在完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118495
求助须知:如何正确求助?哪些是违规求助? 4324442
关于积分的说明 13472092
捐赠科研通 4157447
什么是DOI,文献DOI怎么找? 2278444
邀请新用户注册赠送积分活动 1280187
关于科研通互助平台的介绍 1218907