Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion

土壤盐分 盐度 归一化差异植被指数 环境科学 VNIR公司 土壤水分 土壤科学 土工试验 决定系数 线性回归 多元统计 水文学(农业) 遥感 数学 统计 气候变化 地质学 海洋学 岩土工程 高光谱成像
作者
Hazem T. Abd El-Hamid,Fahad Alshehri,Ahmed El-Zeiny,Hoda Nour-Eldin
出处
期刊:Marine Pollution Bulletin [Elsevier]
卷期号:187: 114555-114555 被引量:13
标识
DOI:10.1016/j.marpolbul.2022.114555
摘要

Soils along the Egyptian coast are vulnerable to environmental degradation and soil salinity problems. The main objective of this study is to identify and rapidly predict salt affected soils using remote sensing data and multivariate statistical analysis. To achieve this objective, the Operational Land Imager 8 (OLI) of Landsat imagery acquired in March 2022 was processed through the Maximum Likelihood classifier to assess Landscape features and to produce Normalized difference salinity index (NDSI) and normalized difference vegetation index (NDVI). Water and soil samples were collected from 13 field sites as ground truth data and to investigate representative physical and chemical properties. Linear regression model was used to predict soil salinity while soil parameters were mapped using Inverse Distance Weight (IDW) in ArcGIS 10.5. In order to explore the soil salinity content using VNIR-SWIR spectra, this work investigated the potential of Partial least squares regression (PLS regression) and SVM (Support vector machine). For simulating salinity in the investigated area, a total number of 65 different sites were identified considering that almost 75 % (50 sites) were used to develop the model and 25 % (15 sites) for validation of the established model. The results indicated that EC levels of water samples are not suitable for irrigation (> 3 mS/cm). Majority of the collected soil samples represent saline-alkaline soils. NDSI ranged from -0.83 to 0.57 with mean of -0.25. Based on the variance of components, 90 % of data were obtained from the first three PCA. The PLS model's R2 score of 0.763 and extremely low p value indicates how well it predicts soil salinity. SVM model R2, on the other hand, is 0.719. Further, Ca++ and Mg++ are the main significant parameters selected in the predicted model. This shows that remote sensing data and multivariate analysis are very important tools to map spatial variation and predict soil salinity. The developed model for salinity considered both the spectral retrieved parameters and lab analyses of cations giving higher accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕天与发布了新的文献求助10
刚刚
刚刚
苹果音响完成签到,获得积分20
1秒前
小C完成签到,获得积分10
1秒前
准了完成签到 ,获得积分10
1秒前
火星完成签到 ,获得积分10
2秒前
2秒前
JW发布了新的文献求助10
2秒前
2秒前
Felicity完成签到,获得积分20
2秒前
枫树狐狸发布了新的文献求助10
2秒前
liangzhao发布了新的文献求助30
2秒前
Jelinna完成签到,获得积分10
3秒前
3秒前
顺心的大侠完成签到,获得积分10
3秒前
Ava应助hhwoyebudong采纳,获得10
3秒前
斯文败类应助健忘的妙松采纳,获得30
4秒前
郭生发布了新的文献求助10
5秒前
keyanlv发布了新的文献求助10
5秒前
lilili发布了新的文献求助10
5秒前
NexusExplorer应助wrrop采纳,获得10
5秒前
Zx_1993应助Innocent_Story采纳,获得10
5秒前
哎哟发布了新的文献求助10
5秒前
weiliu发布了新的文献求助10
6秒前
ZWY完成签到,获得积分10
6秒前
wanci应助猪猪hero采纳,获得10
6秒前
27小天使应助林子采纳,获得30
6秒前
宓天问完成签到,获得积分10
6秒前
7秒前
顺心稚晴完成签到 ,获得积分10
7秒前
David发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
7秒前
喜欢朝雪发布了新的文献求助10
8秒前
8秒前
hometown完成签到,获得积分10
9秒前
张晨完成签到 ,获得积分10
9秒前
orixero应助踏实映天采纳,获得10
9秒前
9秒前
liangzhao完成签到,获得积分10
9秒前
wzyshzu完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710