切萨皮克湾
构造盆地
人工神经网络
基流
流量(数学)
海湾
基础(拓扑)
水文学(农业)
流域
地质学
计算机科学
人工智能
海洋学
地貌学
地图学
河口
岩土工程
数学
地理
几何学
数学分析
作者
Jiye Lee,Ather Abbas,Gregory W. McCarty,Xuesong Zhang,Sangchul Lee,Kyung Hwa Cho
标识
DOI:10.1016/j.jhydrol.2022.128916
摘要
• Long-short-term-memory (LSTM) model was used to simulate base and surface flow. • Sub-basin-level LSTM and basin-level LSTM were developed. • Simulation accuracies of LSTM-based and SWAT models were compared. • The sub-basin-level LSTM achieved superior performance for 19-year simulation. • The importance of input features of sub-basin-level LSTM was evaluated.
科研通智能强力驱动
Strongly Powered by AbleSci AI