劈形算符
领域(数学分析)
组合数学
同种类的
有界函数
Neumann边界条件
欧米茄
物理
数学
边界(拓扑)
数学分析
量子力学
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:28 (10): 5281-5295
被引量:2
标识
DOI:10.3934/dcdsb.2022255
摘要
This work is concerned with a chemotaxis-May-Nowak model with superlinear degradation:$ \begin{eqnarray*} \left\{\begin{array}{lll} u_t = \Delta u-\nabla \cdot(u\nabla v)-u^\kappa-uw+r, \\ v_t = \Delta v-v+uw, \\ w_t = \Delta w-w+v\ \end{array}\right. \end{eqnarray*} $in a smooth bounded domain $ \Omega\subset \mathbb{R}^2 $ with homogeneous Neumann boundary conditions. It is shown that for arbitrary superlinear degradation rate ($ \kappa>1 $), the problem admits a global generalized solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI