已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HLA-Inception: A structure-based deep learning framework for MHC-I binding motif prediction

主要组织相容性复合体 人类白细胞抗原 计算生物学 MHC I级 生物 结合位点 遗传学 等位基因 基因 抗原 生物化学
作者
Eric Wilson,John Kevin Cava,Karen S. Anderson,Abhishek Singharoy
出处
期刊:Journal of Immunology [American Association of Immunologists]
卷期号:208 (1_Supplement): 102.23-102.23
标识
DOI:10.4049/jimmunol.208.supp.102.23
摘要

Abstract The ability to accurately identify peptide ligands for a given major histocompatibility complex class I (MHC-I) molecule has immense value for targeted anticancer and antiviral therapeutics. However, the highly polymorphic nature of the MHC-I protein makes universal prediction of peptide ligands challenging due to lack of experimental data describing most MHC-I variants, and the vast number of protein variants precludes comprehensive experimental determination. Therefore, there is a need for a framework to cluster MHC-I alleles to prioritize for experimental validation as well as identify alleles with potential disease associations. To address this challenge, we have developed a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I peptide binding motif using data derived from the structure of the MHC-I binding pocket. By approaching this problem from a 3-dimensional perspective, we can fully consider the impact of sidechain arrangement and topology of the MHC-I binding pocket on peptide binding motif, which is not inherently captured by the popular protein sequence-based approaches. Through a combination of homology modeling and biophysical simulations, we created protein structure models for all full-length HLA-ABC alleles. The topology and interaction forces within the MHC-I binding pocket were accounted for by solving the 3-dimensional electrostatic potential near the surface of the protein. HLA-Inception was then trained on all MHC-I alleles with known MHC-I binding motifs and applied to the full set of MHC-I models. We found that predicted peptide binding motifs fell into distinct and well-defined clusters which maintained known peptide binding and disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
why完成签到 ,获得积分10
3秒前
852应助Guoqiang采纳,获得10
4秒前
CATH完成签到 ,获得积分10
8秒前
胖大海完成签到 ,获得积分10
10秒前
终于花开日完成签到 ,获得积分10
11秒前
666完成签到 ,获得积分10
11秒前
asaki完成签到,获得积分10
13秒前
14秒前
瀛瀛完成签到 ,获得积分10
17秒前
卡拉蜜儿应助Clarity采纳,获得30
20秒前
甜美宛儿完成签到,获得积分10
21秒前
章鱼完成签到,获得积分10
21秒前
27秒前
八二年葡萄糖完成签到,获得积分10
28秒前
韩腾博完成签到,获得积分10
31秒前
31秒前
怕黑鲂完成签到 ,获得积分10
32秒前
34秒前
友好冥王星完成签到 ,获得积分10
36秒前
LiangRen完成签到 ,获得积分10
37秒前
Guoqiang发布了新的文献求助10
37秒前
我是老大应助雪白小蜜蜂采纳,获得10
42秒前
黄纪毅发布了新的文献求助10
44秒前
烟花应助ZXH采纳,获得10
56秒前
58秒前
1分钟前
HY发布了新的文献求助10
1分钟前
虚心未来完成签到,获得积分10
1分钟前
ZXH发布了新的文献求助10
1分钟前
英姑应助有点意思采纳,获得10
1分钟前
李健应助八二年葡萄糖采纳,获得10
1分钟前
解语花发布了新的文献求助80
1分钟前
锦七完成签到,获得积分10
1分钟前
1分钟前
monthli发布了新的文献求助10
1分钟前
wangyang完成签到 ,获得积分10
1分钟前
无花果应助babren采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959981
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803056