HLA-Inception: A structure-based deep learning framework for MHC-I binding motif prediction

主要组织相容性复合体 人类白细胞抗原 计算生物学 MHC I级 生物 结合位点 遗传学 等位基因 基因 抗原 生物化学
作者
Eric Wilson,John Kevin Cava,Karen S. Anderson,Abhishek Singharoy
出处
期刊:Journal of Immunology [The American Association of Immunologists]
卷期号:208 (1_Supplement): 102.23-102.23
标识
DOI:10.4049/jimmunol.208.supp.102.23
摘要

Abstract The ability to accurately identify peptide ligands for a given major histocompatibility complex class I (MHC-I) molecule has immense value for targeted anticancer and antiviral therapeutics. However, the highly polymorphic nature of the MHC-I protein makes universal prediction of peptide ligands challenging due to lack of experimental data describing most MHC-I variants, and the vast number of protein variants precludes comprehensive experimental determination. Therefore, there is a need for a framework to cluster MHC-I alleles to prioritize for experimental validation as well as identify alleles with potential disease associations. To address this challenge, we have developed a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I peptide binding motif using data derived from the structure of the MHC-I binding pocket. By approaching this problem from a 3-dimensional perspective, we can fully consider the impact of sidechain arrangement and topology of the MHC-I binding pocket on peptide binding motif, which is not inherently captured by the popular protein sequence-based approaches. Through a combination of homology modeling and biophysical simulations, we created protein structure models for all full-length HLA-ABC alleles. The topology and interaction forces within the MHC-I binding pocket were accounted for by solving the 3-dimensional electrostatic potential near the surface of the protein. HLA-Inception was then trained on all MHC-I alleles with known MHC-I binding motifs and applied to the full set of MHC-I models. We found that predicted peptide binding motifs fell into distinct and well-defined clusters which maintained known peptide binding and disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
濮阳冰海完成签到 ,获得积分10
1秒前
懵懂小尉完成签到,获得积分10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
彳亍1117应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
dyd完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
qiqi应助科研通管家采纳,获得10
1秒前
哎嘿应助科研通管家采纳,获得10
1秒前
无辜砖头应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
vlots应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
2秒前
IBMffff应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
彳亍1117应助科研通管家采纳,获得20
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
哎嘿应助科研通管家采纳,获得10
2秒前
2秒前
玉杰发布了新的文献求助10
2秒前
Lucas应助cherish采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
坦率耳机应助任性的恋风采纳,获得10
4秒前
jason发布了新的文献求助10
4秒前
Superg发布了新的文献求助10
5秒前
苗条丹南完成签到 ,获得积分10
6秒前
哭泣的缘郡完成签到 ,获得积分10
6秒前
我很nice发布了新的文献求助10
6秒前
Bennyz完成签到,获得积分10
7秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760