HLA-Inception: A structure-based deep learning framework for MHC-I binding motif prediction

主要组织相容性复合体 人类白细胞抗原 计算生物学 MHC I级 生物 结合位点 遗传学 等位基因 基因 抗原 生物化学
作者
Eric Wilson,John Kevin Cava,Karen S. Anderson,Abhishek Singharoy
出处
期刊:Journal of Immunology [The American Association of Immunologists]
卷期号:208 (1_Supplement): 102.23-102.23
标识
DOI:10.4049/jimmunol.208.supp.102.23
摘要

Abstract The ability to accurately identify peptide ligands for a given major histocompatibility complex class I (MHC-I) molecule has immense value for targeted anticancer and antiviral therapeutics. However, the highly polymorphic nature of the MHC-I protein makes universal prediction of peptide ligands challenging due to lack of experimental data describing most MHC-I variants, and the vast number of protein variants precludes comprehensive experimental determination. Therefore, there is a need for a framework to cluster MHC-I alleles to prioritize for experimental validation as well as identify alleles with potential disease associations. To address this challenge, we have developed a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I peptide binding motif using data derived from the structure of the MHC-I binding pocket. By approaching this problem from a 3-dimensional perspective, we can fully consider the impact of sidechain arrangement and topology of the MHC-I binding pocket on peptide binding motif, which is not inherently captured by the popular protein sequence-based approaches. Through a combination of homology modeling and biophysical simulations, we created protein structure models for all full-length HLA-ABC alleles. The topology and interaction forces within the MHC-I binding pocket were accounted for by solving the 3-dimensional electrostatic potential near the surface of the protein. HLA-Inception was then trained on all MHC-I alleles with known MHC-I binding motifs and applied to the full set of MHC-I models. We found that predicted peptide binding motifs fell into distinct and well-defined clusters which maintained known peptide binding and disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小昼完成签到 ,获得积分10
刚刚
尊敬的完成签到,获得积分10
1秒前
1秒前
整齐海秋完成签到,获得积分10
1秒前
1秒前
善学以致用应助白榆采纳,获得10
1秒前
JamesPei应助易达采纳,获得10
2秒前
2秒前
2秒前
圣晟胜发布了新的文献求助10
2秒前
xx发布了新的文献求助10
3秒前
忧郁觅柔完成签到 ,获得积分10
3秒前
追寻夜香发布了新的文献求助10
3秒前
昊康好完成签到,获得积分10
3秒前
4秒前
yy完成签到,获得积分10
4秒前
5秒前
缓慢天抒完成签到 ,获得积分10
5秒前
科研通AI5应助路之遥兮采纳,获得10
5秒前
爱睡觉的亮亮完成签到,获得积分10
6秒前
圈圈发布了新的文献求助10
6秒前
顾矜应助无聊先知采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
咕咕咕完成签到,获得积分10
7秒前
经法发布了新的文献求助10
8秒前
晚亭完成签到,获得积分10
8秒前
欲望被鬼举报戚薇求助涉嫌违规
9秒前
yangyang发布了新的文献求助10
9秒前
优雅的琳发布了新的文献求助10
10秒前
时光发布了新的文献求助10
10秒前
yuki完成签到,获得积分10
10秒前
南逸然完成签到,获得积分10
10秒前
10秒前
11秒前
HongJiang发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678