Noise reduction in Clinical MRI Scans employing Filter Combining Techniques

维纳滤波器 均方误差 降噪 滤波器(信号处理) 计算机科学 噪音(视频) 人工智能 中值滤波器 椒盐噪音 图像质量 计算机视觉 信噪比(成像) 噪声测量 模式识别(心理学) 图像处理 数学 统计 图像(数学) 电信
作者
Bhavna Kaushik Pancholi,Pramod S. Modi
标识
DOI:10.1109/ictacs56270.2022.9988482
摘要

The implementation of Magnetic Resonance Imaging (MRI) pictures in the initial identification and treatment of a variety of disorders has become integral. These images are a set of data intended for visual inspections that are susceptible to specific noises and artefacts. Noise free MRI images are necessary for increasing the overall accuracy and clarity of assessment and therapy analytical evaluation. While gathering, processing and distribution many clinical images are influenced by various forms of sounds, resulting in the degradation of details pertaining with the image, which can impact the performance of illness treatment. To decrease the noise in medical scans for subsequent assessment, numerous filtering techniques are applied. The variety of digital filters, namely the Anisotropic filter, Median filter, Wiener filter and Non-Local Mean filter are discussed in this paper and their combinations are implemented with respect to all static parameters such as the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Universal Quality Index (UQI). A noise removal strategy based on the Wiener filter is developed in this study analysis for enhancing the image quality of diverse diagnostic imaging. The optimum outcome is obtained by combining the Wiener filter with all the static parameters. Existing noise reduction filtering approaches are outperformed by the suggested method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到,获得积分10
刚刚
1秒前
斯文败类应助wangjing11采纳,获得10
2秒前
霜霜完成签到,获得积分10
2秒前
3秒前
3秒前
yiyi发布了新的文献求助30
4秒前
chenyuyuan完成签到,获得积分10
4秒前
赘婿应助酷笑采纳,获得10
4秒前
4秒前
4秒前
5秒前
liminghao发布了新的文献求助30
5秒前
5秒前
wpf7848发布了新的文献求助10
6秒前
Candy发布了新的文献求助30
6秒前
tachang完成签到,获得积分10
6秒前
鱼洞完成签到,获得积分10
7秒前
冷艳的半凡完成签到,获得积分10
7秒前
腾飞完成签到,获得积分10
8秒前
所所应助konglingjie采纳,获得10
9秒前
无所谓666发布了新的文献求助10
10秒前
wanci应助有魅力老头采纳,获得10
10秒前
10秒前
赘婿应助有魅力老头采纳,获得10
10秒前
慕青应助有魅力老头采纳,获得10
10秒前
科目三应助有魅力老头采纳,获得10
10秒前
充电宝应助有魅力老头采纳,获得10
10秒前
隐形曼青应助有魅力老头采纳,获得10
10秒前
小马甲应助有魅力老头采纳,获得10
10秒前
慕青应助有魅力老头采纳,获得10
11秒前
研友_VZG7GZ应助有魅力老头采纳,获得10
11秒前
川川发布了新的文献求助10
11秒前
yiyi完成签到,获得积分10
12秒前
暴躁的马里奥完成签到,获得积分10
12秒前
12秒前
浮游应助现代风格采纳,获得10
13秒前
Orange应助皮蛋瘦肉粥采纳,获得10
14秒前
铁皮发布了新的文献求助20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540561
求助须知:如何正确求助?哪些是违规求助? 4627197
关于积分的说明 14602739
捐赠科研通 4568254
什么是DOI,文献DOI怎么找? 2504430
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645