Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning

激励 外部性 机制(生物学) 机构设计 计算机科学 微观经济学 激励相容性 经济 计算机安全 业务 环境经济学 认识论 哲学
作者
Jianfeng Lu,Bangqi Pan,Abegaz Mohammed Seid,Bing Li,Gangqiang Hu,Shaohua Wan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 2909-2923 被引量:9
标识
DOI:10.1109/tcss.2022.3227270
摘要

Although vertical federated learning (VFL) has become a new paradigm of distributed machine learning for emerging multiparty joint modeling applications, how to effectively incentivize self-conscious clients to actively and reliably contribute to collaborative learning in VFL has become a critical issue. Existing efforts are inadequate to address this issue since the training sample size needs to be unified before model training in VFL. To this end, selfish clients should unconditionally and honestly declare their private information, such as model training costs and benefits. However, such an assumption is unrealistic. In this article, we develop the first Truthful incEntive mechAnism for VFL, $\mathbb {TEA}$ , to handle both information self-disclosure and social utility maximization. Specifically, we design a transfer payment rule via internalizing externalities, which bundles the clients' utilities with the social utility, making truthful reporting by clients be a Nash equilibrium. Theoretically, we prove that $\mathbb {TEA}$ can achieve truthfulness and social utility maximization, as well as budget balance (BB) or individual rationality (IR). On this basis, we further design a sample size decision rule via linear programming (LP) relaxation to meet the requirements of different scenarios. Finally, extensive experiments on synthetic and real-world datasets validate the theoretical properties of $\mathbb {TEA}$ and demonstrate its superiority compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老阎发布了新的文献求助20
1秒前
HEIKU应助ww采纳,获得10
1秒前
1秒前
1秒前
bodhi完成签到,获得积分10
2秒前
Huajing_Yang发布了新的文献求助10
3秒前
勤劳老虎发布了新的文献求助10
3秒前
haibara完成签到,获得积分10
3秒前
小太阳发布了新的文献求助10
3秒前
4秒前
KK完成签到,获得积分10
4秒前
Hello应助bingsu108采纳,获得10
5秒前
李健的粉丝团团长应助sss采纳,获得10
5秒前
好酒不溅完成签到 ,获得积分10
5秒前
小雯钱来发布了新的文献求助10
6秒前
宋坤完成签到,获得积分10
6秒前
oldblack完成签到,获得积分10
6秒前
鲤鱼鸽子应助l玖采纳,获得10
6秒前
EasyE完成签到,获得积分10
6秒前
pan蕊发布了新的文献求助10
6秒前
科目三应助任梓宁采纳,获得10
7秒前
7秒前
8秒前
8秒前
zino完成签到,获得积分10
8秒前
8秒前
吃土豆的番茄完成签到,获得积分10
8秒前
bjut完成签到,获得积分10
9秒前
李健应助杨欣悦采纳,获得10
9秒前
KK发布了新的文献求助10
9秒前
Doraemon完成签到,获得积分10
10秒前
晴小晴完成签到,获得积分10
10秒前
礼堂的丁真完成签到 ,获得积分10
12秒前
tutu发布了新的文献求助10
12秒前
kkkk1004完成签到,获得积分10
12秒前
13秒前
儒雅儒雅完成签到,获得积分10
13秒前
13秒前
537发布了新的文献求助10
13秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327