Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning

激励 外部性 机制(生物学) 机构设计 计算机科学 微观经济学 激励相容性 经济 计算机安全 业务 环境经济学 认识论 哲学
作者
Jianfeng Lu,Bangqi Pan,Abegaz Mohammed Seid,Bing Li,Gangqiang Hu,Shaohua Wan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 2909-2923 被引量:9
标识
DOI:10.1109/tcss.2022.3227270
摘要

Although vertical federated learning (VFL) has become a new paradigm of distributed machine learning for emerging multiparty joint modeling applications, how to effectively incentivize self-conscious clients to actively and reliably contribute to collaborative learning in VFL has become a critical issue. Existing efforts are inadequate to address this issue since the training sample size needs to be unified before model training in VFL. To this end, selfish clients should unconditionally and honestly declare their private information, such as model training costs and benefits. However, such an assumption is unrealistic. In this article, we develop the first Truthful incEntive mechAnism for VFL, $\mathbb {TEA}$ , to handle both information self-disclosure and social utility maximization. Specifically, we design a transfer payment rule via internalizing externalities, which bundles the clients' utilities with the social utility, making truthful reporting by clients be a Nash equilibrium. Theoretically, we prove that $\mathbb {TEA}$ can achieve truthfulness and social utility maximization, as well as budget balance (BB) or individual rationality (IR). On this basis, we further design a sample size decision rule via linear programming (LP) relaxation to meet the requirements of different scenarios. Finally, extensive experiments on synthetic and real-world datasets validate the theoretical properties of $\mathbb {TEA}$ and demonstrate its superiority compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
5秒前
小铭发布了新的文献求助10
7秒前
一路生花完成签到,获得积分10
7秒前
欢喜的元蝶完成签到,获得积分10
8秒前
9秒前
温暖的天与完成签到 ,获得积分10
10秒前
坚强的初夏完成签到,获得积分10
11秒前
Hello应助英语六级采纳,获得10
12秒前
YanXT完成签到,获得积分10
12秒前
完美世界应助ZHI采纳,获得10
13秒前
不语发布了新的文献求助10
14秒前
14秒前
15秒前
叮叮叮铛完成签到,获得积分10
16秒前
Jasper应助基拉采纳,获得10
19秒前
20秒前
Alan发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
不语完成签到,获得积分10
22秒前
wlscj举报lq求助涉嫌违规
22秒前
changping应助木子雨采纳,获得10
23秒前
贾明灵发布了新的文献求助10
23秒前
23秒前
科研通AI6应助和谐的芷文采纳,获得10
23秒前
blingcmeng发布了新的文献求助10
25秒前
不爱吃魔芋完成签到,获得积分10
25秒前
科研通AI5应助anton采纳,获得10
26秒前
zsy完成签到,获得积分10
26秒前
anhao发布了新的文献求助10
27秒前
27秒前
科研通AI5应助花酒采纳,获得10
27秒前
Chimmy发布了新的文献求助10
28秒前
hibeauty完成签到,获得积分10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834