亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning

激励 外部性 机制(生物学) 机构设计 计算机科学 微观经济学 激励相容性 经济 计算机安全 业务 环境经济学 认识论 哲学
作者
Jianfeng Lu,Bangqi Pan,Abegaz Mohammed Seid,Bing Li,Gangqiang Hu,Shaohua Wan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 2909-2923 被引量:9
标识
DOI:10.1109/tcss.2022.3227270
摘要

Although vertical federated learning (VFL) has become a new paradigm of distributed machine learning for emerging multiparty joint modeling applications, how to effectively incentivize self-conscious clients to actively and reliably contribute to collaborative learning in VFL has become a critical issue. Existing efforts are inadequate to address this issue since the training sample size needs to be unified before model training in VFL. To this end, selfish clients should unconditionally and honestly declare their private information, such as model training costs and benefits. However, such an assumption is unrealistic. In this article, we develop the first Truthful incEntive mechAnism for VFL, $\mathbb {TEA}$ , to handle both information self-disclosure and social utility maximization. Specifically, we design a transfer payment rule via internalizing externalities, which bundles the clients' utilities with the social utility, making truthful reporting by clients be a Nash equilibrium. Theoretically, we prove that $\mathbb {TEA}$ can achieve truthfulness and social utility maximization, as well as budget balance (BB) or individual rationality (IR). On this basis, we further design a sample size decision rule via linear programming (LP) relaxation to meet the requirements of different scenarios. Finally, extensive experiments on synthetic and real-world datasets validate the theoretical properties of $\mathbb {TEA}$ and demonstrate its superiority compared with the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小圆圈发布了新的文献求助100
2秒前
6秒前
11秒前
Ava应助科研通管家采纳,获得10
37秒前
null应助科研通管家采纳,获得10
37秒前
null应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
顾矜应助科研通管家采纳,获得20
37秒前
jarrykim完成签到,获得积分10
52秒前
53秒前
上官若男应助LukeLion采纳,获得10
58秒前
所所应助轻松一曲采纳,获得10
1分钟前
每㐬山风完成签到 ,获得积分10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
微醺潮汐发布了新的文献求助10
1分钟前
852应助dbyy采纳,获得10
1分钟前
灯光师完成签到,获得积分10
1分钟前
1分钟前
1分钟前
轻松一曲发布了新的文献求助10
1分钟前
轻松一曲完成签到,获得积分10
2分钟前
动听的又亦完成签到 ,获得积分10
2分钟前
2分钟前
du关闭了du文献求助
2分钟前
答辩完成签到 ,获得积分10
2分钟前
2分钟前
领导范儿应助LiuHD采纳,获得10
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
科目三应助zhang采纳,获得10
2分钟前
3分钟前
xaopng完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
dbyy发布了新的文献求助10
3分钟前
zhang发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224