Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning

激励 外部性 机制(生物学) 机构设计 计算机科学 微观经济学 激励相容性 经济 计算机安全 业务 环境经济学 认识论 哲学
作者
Jianfeng Lu,Bangqi Pan,Abegaz Mohammed Seid,Bing Li,Gangqiang Hu,Shaohua Wan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 2909-2923 被引量:9
标识
DOI:10.1109/tcss.2022.3227270
摘要

Although vertical federated learning (VFL) has become a new paradigm of distributed machine learning for emerging multiparty joint modeling applications, how to effectively incentivize self-conscious clients to actively and reliably contribute to collaborative learning in VFL has become a critical issue. Existing efforts are inadequate to address this issue since the training sample size needs to be unified before model training in VFL. To this end, selfish clients should unconditionally and honestly declare their private information, such as model training costs and benefits. However, such an assumption is unrealistic. In this article, we develop the first Truthful incEntive mechAnism for VFL, $\mathbb {TEA}$ , to handle both information self-disclosure and social utility maximization. Specifically, we design a transfer payment rule via internalizing externalities, which bundles the clients' utilities with the social utility, making truthful reporting by clients be a Nash equilibrium. Theoretically, we prove that $\mathbb {TEA}$ can achieve truthfulness and social utility maximization, as well as budget balance (BB) or individual rationality (IR). On this basis, we further design a sample size decision rule via linear programming (LP) relaxation to meet the requirements of different scenarios. Finally, extensive experiments on synthetic and real-world datasets validate the theoretical properties of $\mathbb {TEA}$ and demonstrate its superiority compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王二萌完成签到 ,获得积分10
刚刚
丰那个丰发布了新的文献求助10
刚刚
断章完成签到 ,获得积分10
1秒前
顾矜应助缥缈飞鸟采纳,获得10
3秒前
3秒前
彭于晏应助raincoats采纳,获得15
4秒前
打打应助科研探索者采纳,获得10
4秒前
小墨墨发布了新的文献求助30
4秒前
落后的盼秋完成签到,获得积分10
5秒前
大方元风完成签到 ,获得积分10
6秒前
听风完成签到,获得积分20
7秒前
科研鸟发布了新的文献求助10
9秒前
11秒前
情怀应助落寞银耳汤采纳,获得10
11秒前
XXXXX完成签到,获得积分10
11秒前
FrozNineTivus完成签到,获得积分10
14秒前
听风发布了新的文献求助10
14秒前
CipherSage应助念姬采纳,获得10
18秒前
腼腆的梦蕊完成签到 ,获得积分10
18秒前
Neuro_dan完成签到,获得积分0
18秒前
pluto应助熊猫文文采纳,获得10
20秒前
无情的水蓉完成签到,获得积分10
20秒前
21秒前
JamesPei应助丰那个丰采纳,获得10
22秒前
酷波er应助000采纳,获得10
22秒前
yangjian完成签到 ,获得积分10
22秒前
23秒前
傅勃霖发布了新的文献求助10
24秒前
苹果秋灵发布了新的文献求助10
27秒前
张雷应助22222采纳,获得30
27秒前
XLL小绿绿发布了新的文献求助10
27秒前
所所应助YYY采纳,获得10
28秒前
29秒前
han完成签到 ,获得积分10
31秒前
an发布了新的文献求助10
32秒前
517843291完成签到,获得积分10
33秒前
34秒前
000发布了新的文献求助10
34秒前
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388