亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning

激励 外部性 机制(生物学) 机构设计 计算机科学 微观经济学 激励相容性 经济 计算机安全 业务 环境经济学 认识论 哲学
作者
Jianfeng Lu,Bangqi Pan,Abegaz Mohammed Seid,Bing Li,Gangqiang Hu,Shaohua Wan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 2909-2923 被引量:9
标识
DOI:10.1109/tcss.2022.3227270
摘要

Although vertical federated learning (VFL) has become a new paradigm of distributed machine learning for emerging multiparty joint modeling applications, how to effectively incentivize self-conscious clients to actively and reliably contribute to collaborative learning in VFL has become a critical issue. Existing efforts are inadequate to address this issue since the training sample size needs to be unified before model training in VFL. To this end, selfish clients should unconditionally and honestly declare their private information, such as model training costs and benefits. However, such an assumption is unrealistic. In this article, we develop the first Truthful incEntive mechAnism for VFL, $\mathbb {TEA}$ , to handle both information self-disclosure and social utility maximization. Specifically, we design a transfer payment rule via internalizing externalities, which bundles the clients' utilities with the social utility, making truthful reporting by clients be a Nash equilibrium. Theoretically, we prove that $\mathbb {TEA}$ can achieve truthfulness and social utility maximization, as well as budget balance (BB) or individual rationality (IR). On this basis, we further design a sample size decision rule via linear programming (LP) relaxation to meet the requirements of different scenarios. Finally, extensive experiments on synthetic and real-world datasets validate the theoretical properties of $\mathbb {TEA}$ and demonstrate its superiority compared with the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
danruolan发布了新的文献求助10
2秒前
12秒前
17秒前
18秒前
23秒前
科研通AI6.1应助啵子采纳,获得10
23秒前
121发布了新的文献求助10
24秒前
熊仔一百完成签到,获得积分0
24秒前
24秒前
25秒前
L坨坨完成签到,获得积分10
26秒前
29秒前
Tang发布了新的文献求助30
30秒前
32秒前
35秒前
37秒前
38秒前
wcx完成签到,获得积分10
38秒前
42秒前
44秒前
danruolan完成签到,获得积分10
44秒前
星辰大海应助科研通管家采纳,获得10
45秒前
赘婿应助科研通管家采纳,获得10
45秒前
充电宝应助科研通管家采纳,获得10
45秒前
50秒前
寻道图强应助周周采纳,获得50
54秒前
黄果兰完成签到,获得积分10
54秒前
1分钟前
Zzzzzzz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
hhh发布了新的文献求助10
1分钟前
Miracle完成签到,获得积分10
1分钟前
Czl完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
hhh完成签到,获得积分10
1分钟前
热情的觅云完成签到 ,获得积分10
1分钟前
vanilla完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780002
求助须知:如何正确求助?哪些是违规求助? 5651336
关于积分的说明 15452646
捐赠科研通 4910879
什么是DOI,文献DOI怎么找? 2643086
邀请新用户注册赠送积分活动 1590697
关于科研通互助平台的介绍 1545154