Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries

材料科学 阴极 锂钴氧化物 界面热阻 单层 化学工程 传热 板层(表面解剖学) 纳米技术 无定形固体 热阻 复合材料 锂离子电池 热力学 有机化学 物理化学 功率(物理) 工程类 化学 物理 电池(电)
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 56268-56279
标识
DOI:10.1021/acsami.2c15718
摘要

Thermal issues associated with lithium-ion batteries (LIBs) can dramatically affect their life cycle and overall performance. However, the effective heat transfer is deeply restrained by the high thermal resistance across the cathode (lithium cobalt oxide, LCO)-separator (polyethylene, PE) interface. This work presents a new approach to tailoring the interfacial thermal resistance, namely, unstructured self-assembled lamella (USAL). Compared to the popular self-assembled monolayers, although the USAL gives a redundant interface and amorphous molecule patterns, it can also provide many benefits, including easy assembly, more thermal bridges, and ready pressurization. Three small organic molecules (SOMs) were assembled into an LCO-PE interface, providing unique functional groups, -NH2, -SH, and -CH3, to illustrate its energy conversion efficiency. Through molecular dynamics simulations, our results show that the USAL can facilitate interfacial heat transfer remarkably. A 3-aminopropyl trimethoxysilane (APTMS)-coated LCO-PE system with 11.4 Å thickness demonstrates the maximum enhancement of thermal conductance, about 320% of the pristine system. Such enhancement is attributed to the developed double heat passages by strong non-bonded interactions across LCO-SOM and PE-SOM interfaces, a tuned temperature field, and high compatibility between SOMs and PE. Importantly, due to SOMs' amorphous morphology, the pressure can be imposed and further enhance the interfacial heat transfer. Results show the improved thermal conductance rises the most for the APTMS-coated LCO-PE system with 11.4 Å thickness at 10 GPa, almost 685% higher than that of the pristine system. The high efficiency of heat transfer comes as a result of the enhanced binding strength across the LCO-SOM and SOM-PE interface, the reduced phonon scattering in PE and SOMs, and the high LCO stiffness. These investigations are expected to provide a new perspective for modulating the heat transfer across the interphase of LIBs and achieve more effective thermal management for the multi-material system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
唐十八完成签到,获得积分10
刚刚
留下记忆完成签到 ,获得积分10
1秒前
害羞人英完成签到,获得积分20
1秒前
顾矜应助结实擎苍采纳,获得10
2秒前
2秒前
含糊的茹妖完成签到 ,获得积分10
3秒前
A11Eveb发布了新的文献求助10
3秒前
3秒前
小鹿发布了新的文献求助10
3秒前
zenoalter发布了新的文献求助10
3秒前
乐观囧完成签到,获得积分20
3秒前
4秒前
卜乌完成签到,获得积分10
4秒前
4秒前
小鹿发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
bad boy完成签到,获得积分10
6秒前
认真摆烂完成签到,获得积分10
7秒前
7秒前
薇薇一笑完成签到 ,获得积分10
7秒前
7秒前
zjspidany发布了新的文献求助60
7秒前
7秒前
7秒前
小怪兽发布了新的文献求助10
8秒前
程乾发布了新的文献求助10
8秒前
8秒前
可爱的函函应助害羞人英采纳,获得10
9秒前
星辰大海应助乐观囧采纳,获得10
9秒前
霜打了的葡萄应助小鹿采纳,获得10
11秒前
苗苗043发布了新的文献求助30
11秒前
贝贝发布了新的文献求助10
11秒前
SuHengpei完成签到,获得积分10
12秒前
花花同学发布了新的文献求助10
12秒前
12秒前
lhx关闭了lhx文献求助
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301228
求助须知:如何正确求助?哪些是违规求助? 2935961
关于积分的说明 8475259
捐赠科研通 2609583
什么是DOI,文献DOI怎么找? 1424790
科研通“疑难数据库(出版商)”最低求助积分说明 662126
邀请新用户注册赠送积分活动 646117