Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries

材料科学 阴极 锂钴氧化物 界面热阻 单层 化学工程 传热 板层(表面解剖学) 纳米技术 无定形固体 热阻 化学物理 复合材料 锂离子电池 热力学 有机化学 物理化学 功率(物理) 工程类 化学 物理 电池(电)
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 56268-56279 被引量:1
标识
DOI:10.1021/acsami.2c15718
摘要

Thermal issues associated with lithium-ion batteries (LIBs) can dramatically affect their life cycle and overall performance. However, the effective heat transfer is deeply restrained by the high thermal resistance across the cathode (lithium cobalt oxide, LCO)-separator (polyethylene, PE) interface. This work presents a new approach to tailoring the interfacial thermal resistance, namely, unstructured self-assembled lamella (USAL). Compared to the popular self-assembled monolayers, although the USAL gives a redundant interface and amorphous molecule patterns, it can also provide many benefits, including easy assembly, more thermal bridges, and ready pressurization. Three small organic molecules (SOMs) were assembled into an LCO-PE interface, providing unique functional groups, -NH2, -SH, and -CH3, to illustrate its energy conversion efficiency. Through molecular dynamics simulations, our results show that the USAL can facilitate interfacial heat transfer remarkably. A 3-aminopropyl trimethoxysilane (APTMS)-coated LCO-PE system with 11.4 Å thickness demonstrates the maximum enhancement of thermal conductance, about 320% of the pristine system. Such enhancement is attributed to the developed double heat passages by strong non-bonded interactions across LCO-SOM and PE-SOM interfaces, a tuned temperature field, and high compatibility between SOMs and PE. Importantly, due to SOMs' amorphous morphology, the pressure can be imposed and further enhance the interfacial heat transfer. Results show the improved thermal conductance rises the most for the APTMS-coated LCO-PE system with 11.4 Å thickness at 10 GPa, almost 685% higher than that of the pristine system. The high efficiency of heat transfer comes as a result of the enhanced binding strength across the LCO-SOM and SOM-PE interface, the reduced phonon scattering in PE and SOMs, and the high LCO stiffness. These investigations are expected to provide a new perspective for modulating the heat transfer across the interphase of LIBs and achieve more effective thermal management for the multi-material system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助MOhy采纳,获得10
刚刚
angrymax完成签到,获得积分10
2秒前
2秒前
2秒前
传奇3应助哆啦的空间站采纳,获得10
3秒前
Coco发布了新的文献求助10
4秒前
Jasper应助风趣的灵枫采纳,获得10
4秒前
大模型应助青年才俊采纳,获得10
5秒前
斯文败类应助青年才俊采纳,获得10
5秒前
5秒前
ding应助xiaohu采纳,获得10
6秒前
科研通AI5应助Yuanyuan采纳,获得10
6秒前
舒服的妙旋完成签到,获得积分20
7秒前
7秒前
托尔斯泰发布了新的文献求助10
7秒前
vulgar发布了新的文献求助10
8秒前
9秒前
儒雅的裘完成签到,获得积分10
11秒前
脑洞疼应助好好学习采纳,获得10
11秒前
xYueea完成签到 ,获得积分10
11秒前
12秒前
12秒前
谦让听白发布了新的文献求助10
13秒前
RosaRubra完成签到,获得积分10
13秒前
13秒前
替勾勾完成签到,获得积分10
14秒前
14秒前
15秒前
雾里完成签到,获得积分10
16秒前
16秒前
科研的豪哥完成签到 ,获得积分10
16秒前
xiaohu发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
替勾勾发布了新的文献求助10
19秒前
在水一方应助舒服的妙旋采纳,获得50
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941236
求助须知:如何正确求助?哪些是违规求助? 4207331
关于积分的说明 13077272
捐赠科研通 3986120
什么是DOI,文献DOI怎么找? 2182459
邀请新用户注册赠送积分活动 1198059
关于科研通互助平台的介绍 1110324