Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries

材料科学 阴极 锂钴氧化物 界面热阻 单层 化学工程 传热 板层(表面解剖学) 纳米技术 无定形固体 热阻 复合材料 锂离子电池 热力学 有机化学 物理化学 功率(物理) 工程类 化学 物理 电池(电)
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 56268-56279
标识
DOI:10.1021/acsami.2c15718
摘要

Thermal issues associated with lithium-ion batteries (LIBs) can dramatically affect their life cycle and overall performance. However, the effective heat transfer is deeply restrained by the high thermal resistance across the cathode (lithium cobalt oxide, LCO)-separator (polyethylene, PE) interface. This work presents a new approach to tailoring the interfacial thermal resistance, namely, unstructured self-assembled lamella (USAL). Compared to the popular self-assembled monolayers, although the USAL gives a redundant interface and amorphous molecule patterns, it can also provide many benefits, including easy assembly, more thermal bridges, and ready pressurization. Three small organic molecules (SOMs) were assembled into an LCO-PE interface, providing unique functional groups, -NH2, -SH, and -CH3, to illustrate its energy conversion efficiency. Through molecular dynamics simulations, our results show that the USAL can facilitate interfacial heat transfer remarkably. A 3-aminopropyl trimethoxysilane (APTMS)-coated LCO-PE system with 11.4 Å thickness demonstrates the maximum enhancement of thermal conductance, about 320% of the pristine system. Such enhancement is attributed to the developed double heat passages by strong non-bonded interactions across LCO-SOM and PE-SOM interfaces, a tuned temperature field, and high compatibility between SOMs and PE. Importantly, due to SOMs' amorphous morphology, the pressure can be imposed and further enhance the interfacial heat transfer. Results show the improved thermal conductance rises the most for the APTMS-coated LCO-PE system with 11.4 Å thickness at 10 GPa, almost 685% higher than that of the pristine system. The high efficiency of heat transfer comes as a result of the enhanced binding strength across the LCO-SOM and SOM-PE interface, the reduced phonon scattering in PE and SOMs, and the high LCO stiffness. These investigations are expected to provide a new perspective for modulating the heat transfer across the interphase of LIBs and achieve more effective thermal management for the multi-material system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恍若完成签到,获得积分10
刚刚
螺旋桨完成签到,获得积分10
1秒前
lf完成签到,获得积分10
1秒前
2秒前
研友_yLpErn完成签到,获得积分10
2秒前
长孙盛男发布了新的文献求助10
3秒前
SQQ完成签到,获得积分20
3秒前
彭佳乐发布了新的文献求助10
4秒前
小二郎应助雅山等等采纳,获得10
4秒前
李晓萌发布了新的文献求助10
4秒前
笨笨松完成签到,获得积分10
5秒前
情怀应助叶上采纳,获得10
6秒前
zzh完成签到,获得积分10
6秒前
徐春悦完成签到,获得积分10
6秒前
6秒前
6秒前
心信鑫完成签到 ,获得积分10
7秒前
呆萌的路人完成签到,获得积分10
7秒前
小豆豆应助Elec采纳,获得30
7秒前
Master_Ye完成签到,获得积分10
7秒前
桃桃完成签到,获得积分20
7秒前
胡雅琴完成签到,获得积分10
7秒前
萧水白应助科研通管家采纳,获得10
8秒前
典雅碧空应助科研通管家采纳,获得10
8秒前
8秒前
典雅碧空应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
只想睡大觉完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
9秒前
SciGPT应助Zirong采纳,获得10
9秒前
franklylyly完成签到,获得积分10
10秒前
共享精神应助SQQ采纳,获得30
10秒前
biubiubiu完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904