清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction

百分位 四分位数 支持向量机 医学 置信区间 队列 肾移植 内科学 比例危险模型 机器学习 梯度升压 肾移植 人工智能 随机森林 计算机科学 统计 移植 数学
作者
Agathe Truchot,Marc Raynaud,Nassim Kamar,Maarten Naesens,Christophe Legendre,Michel Delahousse,Olivier Thaunat,Matthias Büchler,Marta Crespo,Kamilla Linhares,Babak J. Orandi,Enver Akalin,Gervacio Soler Pujol,Hélio Tedesco‐Silva,Gaurav Gupta,Dorry L. Segev,Xavier Monnet,Andrew Bentall,Mark D. Stegall,Carmen Lefaucheur,Olivier Aubert,Alexandre Loupy
出处
期刊:Kidney International [Elsevier]
卷期号:103 (5): 936-948 被引量:9
标识
DOI:10.1016/j.kint.2022.12.011
摘要

Machine learning (ML) models have recently shown potential for predicting kidney allograft outcomes. However, their ability to outperform traditional approaches remains poorly investigated. Therefore, using large cohorts of kidney transplant recipients from 14 centers worldwide, we developed ML-based prediction models for kidney allograft survival and compared their prediction performances to those achieved by a validated Cox-Based Prognostication System (CBPS). In a French derivation cohort of 4000 patients, candidate determinants of allograft failure including donor, recipient and transplant-related parameters were used as predictors to develop tree-based models (RSF, RSF-ERT, CIF), Support Vector Machine models (LK-SVM, AK-SVM) and a gradient boosting model (XGBoost). Models were externally validated with cohorts of 2214 patients from Europe, 1537 from North America, and 671 from South America. Among these 8422 kidney transplant recipients, 1081 (12.84%) lost their grafts after a median post-transplant follow-up time of 6.25 years (Inter Quartile Range 4.33-8.73). At seven years post-risk evaluation, the ML models achieved a C-index of 0.788 (95% bootstrap percentile confidence interval 0.736-0.833), 0.779 (0.724-0.825), 0.786 (0.735-0.832), 0.527 (0.456-0.602), 0.704 (0.648-0.759) and 0.767 (0.711-0.815) for RSF, RSF-ERT, CIF, LK-SVM, AK-SVM and XGBoost respectively, compared with 0.808 (0.792-0.829) for the CBPS. In validation cohorts, ML models' discrimination performances were in a similar range of those of the CBPS. Calibrations of the ML models were similar or less accurate than those of the CBPS. Thus, when using a transparent methodological pipeline in validated international cohorts, ML models, despite overall good performances, do not outperform a traditional CBPS in predicting kidney allograft failure. Hence, our current study supports the continued use of traditional statistical approaches for kidney graft prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助帮帮我好吗采纳,获得10
15秒前
23秒前
1250241652完成签到,获得积分10
23秒前
研友_nxw2xL完成签到,获得积分10
27秒前
muriel完成签到,获得积分10
34秒前
科研通AI2S应助帮帮我好吗采纳,获得10
1分钟前
苗条翠阳完成签到 ,获得积分10
1分钟前
文瑄完成签到 ,获得积分10
1分钟前
深情安青应助帮帮我好吗采纳,获得10
2分钟前
ly完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
善良冷松发布了新的文献求助10
3分钟前
俊逸吐司完成签到 ,获得积分10
3分钟前
研友_LmgOaZ完成签到 ,获得积分0
3分钟前
善良冷松完成签到,获得积分20
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
陈无敌完成签到 ,获得积分10
4分钟前
Richard完成签到 ,获得积分10
5分钟前
顾矜应助帮帮我好吗采纳,获得10
5分钟前
CC完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
开放访天完成签到 ,获得积分10
7分钟前
7分钟前
炫哥IRIS完成签到,获得积分10
7分钟前
7分钟前
路在脚下完成签到 ,获得积分10
8分钟前
不回首完成签到 ,获得积分10
8分钟前
8分钟前
Owen应助帮帮我好吗采纳,获得10
8分钟前
方白秋完成签到,获得积分10
9分钟前
依然灬聆听完成签到,获得积分10
10分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137028
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997