Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction

百分位 四分位数 支持向量机 医学 置信区间 队列 肾移植 内科学 比例危险模型 机器学习 梯度升压 肾移植 人工智能 随机森林 计算机科学 统计 移植 数学
作者
Agathe Truchot,Marc Raynaud,Nassim Kamar,Maarten Naesens,Christophe Legendre,Michel Delahousse,Olivier Thaunat,Matthias Büchler,Marta Crespo,Kamilla Linhares,Babak J. Orandi,Enver Akalin,Gervacio Soler Pujol,Hélio Tedesco‐Silva,Gaurav Gupta,Dorry L. Segev,Xavier Jouven,Andrew Bentall,Mark D. Stegall,Carmen Lefaucheur,Olivier Aubert,Alexandre Loupy
出处
期刊:Kidney International [Elsevier BV]
卷期号:103 (5): 936-948 被引量:11
标识
DOI:10.1016/j.kint.2022.12.011
摘要

Machine learning (ML) models have recently shown potential for predicting kidney allograft outcomes. However, their ability to outperform traditional approaches remains poorly investigated. Therefore, using large cohorts of kidney transplant recipients from 14 centers worldwide, we developed ML-based prediction models for kidney allograft survival and compared their prediction performances to those achieved by a validated Cox-Based Prognostication System (CBPS). In a French derivation cohort of 4000 patients, candidate determinants of allograft failure including donor, recipient and transplant-related parameters were used as predictors to develop tree-based models (RSF, RSF-ERT, CIF), Support Vector Machine models (LK-SVM, AK-SVM) and a gradient boosting model (XGBoost). Models were externally validated with cohorts of 2214 patients from Europe, 1537 from North America, and 671 from South America. Among these 8422 kidney transplant recipients, 1081 (12.84%) lost their grafts after a median post-transplant follow-up time of 6.25 years (Inter Quartile Range 4.33-8.73). At seven years post-risk evaluation, the ML models achieved a C-index of 0.788 (95% bootstrap percentile confidence interval 0.736-0.833), 0.779 (0.724-0.825), 0.786 (0.735-0.832), 0.527 (0.456-0.602), 0.704 (0.648-0.759) and 0.767 (0.711-0.815) for RSF, RSF-ERT, CIF, LK-SVM, AK-SVM and XGBoost respectively, compared with 0.808 (0.792-0.829) for the CBPS. In validation cohorts, ML models' discrimination performances were in a similar range of those of the CBPS. Calibrations of the ML models were similar or less accurate than those of the CBPS. Thus, when using a transparent methodological pipeline in validated international cohorts, ML models, despite overall good performances, do not outperform a traditional CBPS in predicting kidney allograft failure. Hence, our current study supports the continued use of traditional statistical approaches for kidney graft prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LWJJNU发布了新的文献求助10
2秒前
ding应助cc采纳,获得10
2秒前
哈哈完成签到 ,获得积分10
2秒前
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
zyj完成签到,获得积分10
9秒前
G1997完成签到 ,获得积分10
10秒前
12秒前
13秒前
nina完成签到 ,获得积分10
15秒前
17秒前
怪杰发布了新的文献求助10
20秒前
cc发布了新的文献求助10
20秒前
24秒前
24秒前
26秒前
赛猪发布了新的文献求助30
27秒前
安琪完成签到 ,获得积分10
27秒前
研友_Z343J8完成签到 ,获得积分10
28秒前
可爱的函函应助富有皮带采纳,获得10
29秒前
zyj发布了新的文献求助10
29秒前
YCG完成签到 ,获得积分10
30秒前
钱念波发布了新的文献求助10
30秒前
卡卡完成签到 ,获得积分10
30秒前
30秒前
31秒前
白斯特发布了新的文献求助10
31秒前
phw2333发布了新的文献求助20
36秒前
张青争完成签到,获得积分10
36秒前
harmory完成签到,获得积分10
37秒前
伯云完成签到,获得积分10
37秒前
38秒前
Akim应助科研通管家采纳,获得10
39秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
ok应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
天天快乐应助科研通管家采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309