亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-fidelity data-driven modelling of rate-dependent behaviour of soft clays

稳健性(进化) 粘塑性 人工神经网络 实验数据 忠诚 本构方程 应变率 计算机科学 材料科学 机器学习 结构工程 工程类 数学 统计 有限元法 电信 基因 化学 冶金 生物化学
作者
Geng‐Fu He,Pin Zhang,Zhen‐Yu Yin,Yin‐Fu Jin,Yi Yang
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Informa]
卷期号:17 (1): 64-76 被引量:9
标识
DOI:10.1080/17499518.2022.2149815
摘要

Conventional phenomenological elasto-viscoplastic models include numerous parameters that need to be calibrated by case-specific experiments. Data-driven modelling has recently emerged and provided an alternative to constitutive modelling. This study proposes a modelling framework based on multi-fidelity data to model the rate-dependent behaviour of soft clays. In this framework, low-fidelity (LF) data generated by an elasto-viscoplastic model and high-fidelity (HF) data from experimental tests are necessary. Stress–strain-strain rate correlations behind LF and HF data can be captured by long short-term memory and feedforward neural networks, respectively, such that final predictions can be given by a multi-fidelity residual neural network (MR-NN). Such a framework with the same LF data is applied in Hong Kong marine deposits and Merville clay to investigate its feasibility and generalisation ability. In addition, the effect of LF data on the performance of MR-NN is discussed to verify the robustness of the framework. All results demonstrate that rate-dependent undrained shear strength and pore-water pressure can be accurately modelled through the framework, showing adaptive non-linear modelling capability, less demand for experimental data, and superior robustness. These characteristics indicate a considerable potential in modelling the rate-dependent behaviour of clays.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谢发布了新的文献求助10
1秒前
2秒前
3秒前
Karol发布了新的文献求助10
9秒前
20秒前
殷勤的涵梅完成签到 ,获得积分10
29秒前
31秒前
小谢完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
38秒前
1分钟前
level完成签到 ,获得积分10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
土豆发布了新的文献求助10
1分钟前
1分钟前
Chouvikin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
搜集达人应助黑神白了采纳,获得10
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Nyan发布了新的文献求助10
2分钟前
2分钟前
Ann完成签到,获得积分10
2分钟前
沉默的倔驴发布了新的文献求助150
2分钟前
2分钟前
2分钟前
2分钟前
黑神白了发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Donger完成签到 ,获得积分10
3分钟前
含蓄的白安完成签到,获得积分10
3分钟前
3分钟前
3分钟前
好运常在完成签到 ,获得积分10
3分钟前
切尔顿发布了新的文献求助10
3分钟前
kuoping完成签到,获得积分0
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627