Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 医学 物理 病理 替代医学
作者
Gaolong Lv,Zhijun Yao,Dan Chen,Yehai Li,Huanqing Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier]
卷期号:225: 111454-111454 被引量:27
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
didiaonn完成签到,获得积分10
2秒前
LWWW12完成签到,获得积分10
2秒前
eric888应助科研通管家采纳,获得10
2秒前
SJJ应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
聪明凡之应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
王w应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得30
2秒前
王w应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
eric888应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SJJ应助科研通管家采纳,获得10
3秒前
3秒前
yang完成签到,获得积分10
4秒前
Agu完成签到,获得积分10
5秒前
求助人员发布了新的文献求助10
6秒前
徐立涛发布了新的文献求助10
8秒前
www发布了新的文献求助10
8秒前
meili完成签到,获得积分10
11秒前
格拉希尔完成签到,获得积分10
11秒前
阔达的马里奥完成签到 ,获得积分10
13秒前
abcd_1067完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
诗梦完成签到,获得积分10
15秒前
姬鲁宁完成签到 ,获得积分10
16秒前
www完成签到,获得积分10
16秒前
16秒前
风趣秋白完成签到,获得积分0
17秒前
18秒前
CN1681681发布了新的文献求助10
20秒前
wangcw完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851