Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 医学 物理 病理 替代医学
作者
Gaolong Lv,Zhijun Yao,Dan Chen,Yehai Li,Huanqing Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier]
卷期号:225: 111454-111454 被引量:27
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海森咸鱼堡完成签到,获得积分10
刚刚
李爱国应助墨西哥猪肉卷采纳,获得10
刚刚
椰子发布了新的文献求助10
5秒前
欣欣完成签到 ,获得积分10
6秒前
6秒前
6秒前
香蕉觅云应助星期一采纳,获得10
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
zzx完成签到,获得积分10
9秒前
早睡早起完成签到,获得积分10
10秒前
12秒前
无限的民发布了新的文献求助10
13秒前
三胖发布了新的文献求助10
13秒前
乐乐应助鳈sir采纳,获得10
14秒前
大知闲闲发布了新的文献求助10
14秒前
14秒前
囧囧完成签到,获得积分0
15秒前
冻结完成签到 ,获得积分10
15秒前
planto完成签到,获得积分10
16秒前
七人七发布了新的文献求助20
17秒前
18秒前
英俊的铭应助CCC采纳,获得10
19秒前
20秒前
Mic应助捷jie采纳,获得30
21秒前
共享精神应助捷jie采纳,获得30
21秒前
avalanche应助捷jie采纳,获得30
21秒前
可爱的函函应助捷jie采纳,获得30
21秒前
科研通AI2S应助捷jie采纳,获得30
21秒前
21秒前
寻道图强应助捷jie采纳,获得30
21秒前
乐乐应助捷jie采纳,获得30
21秒前
ding应助捷jie采纳,获得30
21秒前
优雅颜发布了新的文献求助10
22秒前
22秒前
小小精神给东123的求助进行了留言
22秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434422
求助须知:如何正确求助?哪些是违规求助? 4546707
关于积分的说明 14203943
捐赠科研通 4466693
什么是DOI,文献DOI怎么找? 2448283
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969