Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 医学 物理 病理 替代医学
作者
Gaolong Lv,Zhijun Yao,Dan Chen,Yehai Li,Huanqing Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier BV]
卷期号:225: 111454-111454 被引量:27
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆完成签到 ,获得积分10
1秒前
xianyaoz完成签到 ,获得积分0
8秒前
杨远杰完成签到,获得积分10
9秒前
蓝桉完成签到 ,获得积分10
9秒前
JuliaWang完成签到 ,获得积分10
16秒前
无限的含羞草完成签到,获得积分10
17秒前
八二力完成签到 ,获得积分10
21秒前
韭菜发布了新的文献求助10
24秒前
情怀应助科研通管家采纳,获得30
27秒前
water应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
2012csc完成签到 ,获得积分0
29秒前
风清扬应助韭菜采纳,获得10
30秒前
WSY完成签到 ,获得积分10
31秒前
虞无声发布了新的文献求助10
32秒前
执着新蕾完成签到,获得积分10
34秒前
Vivian完成签到 ,获得积分10
37秒前
666完成签到 ,获得积分10
39秒前
44秒前
量子星尘发布了新的文献求助10
47秒前
蔡从安完成签到,获得积分10
47秒前
奥雷里亚诺完成签到 ,获得积分10
47秒前
不呆完成签到 ,获得积分10
48秒前
Cheung2121发布了新的文献求助30
48秒前
画龙完成签到,获得积分10
49秒前
韭菜完成签到,获得积分20
50秒前
Owen应助Cheung2121采纳,获得10
53秒前
爱学习的小李完成签到 ,获得积分10
58秒前
若水完成签到 ,获得积分10
58秒前
SYLH应助tian采纳,获得10
58秒前
脑洞疼应助tian采纳,获得10
59秒前
Ava应助tian采纳,获得10
59秒前
领导范儿应助tian采纳,获得10
59秒前
桐桐应助tian采纳,获得10
59秒前
乐乐应助tian采纳,获得10
59秒前
乐乐应助tian采纳,获得10
59秒前
wbscz应助tian采纳,获得10
59秒前
ding应助tian采纳,获得10
59秒前
59秒前
研友_LBRPOL完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022