Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 物理 医学 替代医学 病理
作者
Gaolong Lv,ZhijunYao,Dan Chen,Yehai Li,Hongtao Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier]
卷期号:225: 111454-111454 被引量:12
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王杰完成签到,获得积分10
2秒前
柯南发布了新的文献求助10
4秒前
I1waml完成签到 ,获得积分10
4秒前
冷静灵竹发布了新的文献求助30
4秒前
支翰完成签到 ,获得积分10
5秒前
聆听雨完成签到,获得积分10
5秒前
Joey完成签到 ,获得积分10
5秒前
Hbjja完成签到,获得积分10
5秒前
xiangbobo0129发布了新的文献求助10
6秒前
8秒前
bella完成签到,获得积分10
9秒前
土亢土亢土应助hhhh采纳,获得10
9秒前
10秒前
柯南完成签到,获得积分10
13秒前
man完成签到,获得积分10
14秒前
熬熬就出头了完成签到,获得积分10
15秒前
动人的cc完成签到,获得积分10
16秒前
ryan1300完成签到 ,获得积分10
18秒前
大模型应助宋志远采纳,获得10
19秒前
spngebob94完成签到,获得积分10
19秒前
齐齐巴宾应助俏皮以彤采纳,获得10
19秒前
医学生xy完成签到,获得积分10
19秒前
小鱼爱吃肉应助张张呀采纳,获得10
23秒前
一一应助张张呀采纳,获得50
23秒前
27秒前
空城的回忆应助鹏826采纳,获得10
27秒前
皮皮龙OVO完成签到,获得积分10
27秒前
车水完成签到 ,获得积分10
28秒前
甝虪完成签到,获得积分10
29秒前
澳門大三八完成签到,获得积分10
30秒前
关显锋发布了新的文献求助10
32秒前
星辰大海应助wang5945采纳,获得10
32秒前
科研通AI2S应助欢喜初雪采纳,获得10
33秒前
Hello应助生升采纳,获得30
33秒前
34秒前
34秒前
你不知道完成签到 ,获得积分10
34秒前
今后应助月昔采纳,获得10
35秒前
36秒前
三木足球完成签到,获得积分10
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245843
求助须知:如何正确求助?哪些是违规求助? 2889475
关于积分的说明 8258621
捐赠科研通 2557868
什么是DOI,文献DOI怎么找? 1386710
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626685