Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 物理 医学 替代医学 病理
作者
Gaolong Lv,ZhijunYao,Dan Chen,Yehai Li,Hongtao Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier]
卷期号:225: 111454-111454 被引量:12
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的小玉完成签到,获得积分10
刚刚
1秒前
4秒前
梦里花落知多少完成签到,获得积分10
4秒前
5秒前
阳阳发布了新的文献求助10
5秒前
Poyd发布了新的文献求助10
7秒前
开开完成签到,获得积分10
7秒前
tao_blue发布了新的文献求助10
8秒前
8秒前
888完成签到,获得积分10
8秒前
饭神仙鱼完成签到,获得积分10
9秒前
KBYer发布了新的文献求助20
9秒前
Jzhang应助tmpstlml采纳,获得10
10秒前
YoYo发布了新的文献求助10
10秒前
豌豆发布了新的文献求助10
12秒前
13秒前
言叶完成签到,获得积分10
13秒前
14秒前
CipherSage应助清新的冷松采纳,获得10
14秒前
JamesPei应助Poyd采纳,获得10
15秒前
科目三应助药学牛马采纳,获得10
16秒前
lixm发布了新的文献求助10
17秒前
NAA完成签到,获得积分10
18秒前
18秒前
tao_blue完成签到,获得积分10
18秒前
荔枝完成签到,获得积分20
18秒前
18秒前
19秒前
许多知识完成签到,获得积分10
19秒前
缓慢的战斗机完成签到,获得积分20
20秒前
圣晟胜发布了新的文献求助10
20秒前
科研通AI5应助nextconnie采纳,获得10
21秒前
陈朝旧迹完成签到,获得积分10
21秒前
无花果应助虚心海燕采纳,获得10
22秒前
sun发布了新的文献求助30
23秒前
23秒前
KBYer完成签到,获得积分10
23秒前
FashionBoy应助阳阳采纳,获得10
23秒前
许多知识发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849