Fast and high-resolution laser-ultrasonic imaging for visualizing subsurface defects in additive manufacturing components

材料科学 光栅扫描 超声波传感器 激光器 可视化 光学 制作 光栅图形 声学 超声波检测 计算机科学 人工智能 医学 物理 病理 替代医学
作者
Gaolong Lv,Zhijun Yao,Dan Chen,Yehai Li,Huanqing Cao,Anmin Yin,Yanjun Liu,Shifeng Guo
出处
期刊:Materials & Design [Elsevier]
卷期号:225: 111454-111454 被引量:27
标识
DOI:10.1016/j.matdes.2022.111454
摘要

Additive manufacturing (AM) is an emerging technique for efficient fabrication of individually tailored and complex geometry parts. The fabrication process is prone to induce various defects that can have detrimental effects on the AM components. Therefore, a reliable technique that enables monitoring the integrity of AM components and in return helping to optimize the fabrication parameters in mission-critical structures is highly demanded. This work presents a fast and high-resolution damage visualization method using laser-ultrasonic (LU) imaging technique for accurately detecting and quantifying the subsurface defects in printed AM components. Specifically, a fully noncontact LU scanning system is implemented to generate and detect high signal-to-noise ratio laser ultrasonic waves using a pulsed laser and laser Doppler vibrometer, respectively. A strategy for fast defect localization using Rayleigh waves with circular scans is firstly proposed. The high-resolution 3D synthetic aperture focusing technique (SAFT) imaging with raster scans is subsequently performed focusing around the located damage areas to stereoscopically visualize and quantify the subsurface defects. The reconstructed images are further processed and improved using Gaussian filter algorithm to obtain accurate defect shapes, sizes, and positions. The feasibility of the proposed method is eventually verified on AlSi10Mg and stainless steel (316L) components containing subsurface defects with various types and dimensions. The measured sizes are well consistent with the designed values, suggesting that it is a reliable inspection method for AM parts to ensure quality control and feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助AY采纳,获得10
1秒前
1秒前
23完成签到,获得积分20
1秒前
葛葛发布了新的文献求助20
1秒前
充电宝应助Wff采纳,获得10
2秒前
2秒前
飘逸楷瑞发布了新的文献求助10
2秒前
2秒前
哭泣海豚完成签到,获得积分10
2秒前
Akim应助奕_yinb采纳,获得10
2秒前
3秒前
infe完成签到,获得积分10
3秒前
红3完成签到,获得积分10
3秒前
3秒前
guowoo完成签到,获得积分10
3秒前
3秒前
3秒前
李健应助甜甜的又柔采纳,获得10
4秒前
Hello应助尊敬跳跳糖采纳,获得10
4秒前
Lucas应助caoyy采纳,获得10
5秒前
5秒前
张洁杰完成签到,获得积分10
5秒前
红3发布了新的文献求助10
5秒前
安息发布了新的文献求助10
6秒前
6秒前
ZeKaWa应助烁烁子采纳,获得10
7秒前
斯文败类应助烁烁子采纳,获得10
7秒前
ZeKaWa应助烁烁子采纳,获得10
7秒前
酷波er应助烁烁子采纳,获得10
7秒前
8秒前
8秒前
我是老大应助cz采纳,获得10
8秒前
zhy发布了新的文献求助50
8秒前
Jankin发布了新的文献求助10
8秒前
lili完成签到,获得积分10
9秒前
无极微光应助林加雄采纳,获得20
9秒前
9秒前
9秒前
吴丽萍完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827