已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attenuation estimation by repeatedly solving the forward scattering problem

散射 衰减 计算物理学 物理 计算机科学 光学 衰减系数 声学 算法
作者
Natalia Ilyina,Jeroen Hermans,Erik Verboven,Koen Van Den Abeele,Emiliano D'Agostino,Jan D'hooge
出处
期刊:Ultrasonics [Elsevier]
卷期号:84: 201-209 被引量:4
标识
DOI:10.1016/j.ultras.2017.10.008
摘要

Estimation of the attenuation is important in medical ultrasound not only for correct time-gain compensation but also for tissue characterization. In this paper, the feasibility of a new method for attenuation estimation is tested. The proposed method estimates the attenuation by repeatedly solving the forward wave propagation problem and matching the simulated signals to the measured ones. This approach allows avoiding common assumptions made by other methodologies and potentially allows to account and correct for other acoustic effects that may bias the attenuation estimate. The performance of the method was validated on simulated data and on data recorded in tissue mimicking phantoms with known attenuation properties, and was compared to the spectral-shift and spectral-difference methods. Simulation results showed the different methods to have good accuracy when noise-free signals were considered (the average relative error of the attenuation estimation did not exceed 15%). However, the accuracy of the conventional methods decreased rapidly in the presence of measurement noise and varying scatterer concentration, while the relative error of the proposed method remained below 15%. Furthermore, the proposed method outperformed conventional attenuation estimators in the experimental phantom study, where its average error was 8%, while the average error of the spectral-shift and spectral-difference methods was 26% and 32%, respectively. In summary, these findings demonstrate the feasibility of the proposed approach and motivate us to refine the method for solving more general problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘宋发布了新的文献求助10
刚刚
充电宝应助鲤鱼笑白采纳,获得30
2秒前
4秒前
JamesPei应助畅畅采纳,获得10
4秒前
6秒前
11秒前
lunar完成签到 ,获得积分10
12秒前
周桅发布了新的文献求助10
13秒前
13秒前
14秒前
OliverW完成签到,获得积分10
15秒前
chis关注了科研通微信公众号
16秒前
zefra发布了新的文献求助10
18秒前
18秒前
18秒前
wxpz发布了新的文献求助10
19秒前
20秒前
真不错完成签到,获得积分10
20秒前
zhvjdb发布了新的文献求助10
21秒前
椒盐柠檬茶完成签到,获得积分10
21秒前
娜扎发布了新的文献求助10
21秒前
lizeyu发布了新的文献求助10
22秒前
南宫雪完成签到 ,获得积分10
22秒前
23秒前
24秒前
无花果应助潘宋采纳,获得10
24秒前
真不错发布了新的文献求助10
30秒前
30秒前
32秒前
32秒前
科研通AI2S应助娜扎采纳,获得10
32秒前
李健的小迷弟应助娜扎采纳,获得10
32秒前
yhmi0809完成签到,获得积分10
34秒前
35秒前
兮兮发布了新的文献求助10
35秒前
matteo发布了新的文献求助10
35秒前
王耀发布了新的文献求助10
36秒前
zhu完成签到 ,获得积分10
37秒前
orixero应助燊yy采纳,获得10
39秒前
40秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125756
求助须知:如何正确求助?哪些是违规求助? 2776061
关于积分的说明 7729059
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292114
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380