已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuyu发布了新的文献求助10
刚刚
刚刚
英俊芷完成签到 ,获得积分10
1秒前
小人物的坚持完成签到 ,获得积分10
3秒前
Fran07发布了新的文献求助10
3秒前
kk完成签到 ,获得积分10
4秒前
4秒前
01发布了新的文献求助10
4秒前
Perry应助gg采纳,获得10
6秒前
lalalal发布了新的文献求助10
7秒前
熊子康儿子完成签到 ,获得积分10
7秒前
sl完成签到 ,获得积分10
8秒前
8秒前
拼搏的寒凝完成签到 ,获得积分10
8秒前
kk完成签到 ,获得积分10
9秒前
Fran07完成签到,获得积分10
10秒前
ccc发布了新的文献求助10
10秒前
xuyu完成签到,获得积分20
10秒前
黑米粥发布了新的文献求助10
10秒前
illll发布了新的文献求助30
11秒前
年轻宝川完成签到,获得积分10
11秒前
roe完成签到 ,获得积分10
12秒前
短短急个球完成签到,获得积分10
12秒前
可爱初瑶发布了新的文献求助10
12秒前
共享精神应助李长生采纳,获得10
13秒前
搜集达人应助xuyu采纳,获得10
13秒前
任全强发布了新的文献求助10
14秒前
斯文败类应助瀛瀛采纳,获得10
14秒前
15秒前
狗狗耳完成签到 ,获得积分10
15秒前
孤独蘑菇完成签到 ,获得积分10
15秒前
15秒前
lalalal完成签到,获得积分20
16秒前
佳佳完成签到,获得积分10
17秒前
李程阳完成签到 ,获得积分10
18秒前
Echo发布了新的文献求助10
19秒前
21秒前
黑米粥发布了新的文献求助10
21秒前
林lulu完成签到 ,获得积分10
22秒前
钰L发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502