Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老艺人发布了新的文献求助10
刚刚
kll完成签到,获得积分10
刚刚
刚刚
shareef发布了新的文献求助10
1秒前
1秒前
彭于晏应助单单单采纳,获得10
1秒前
大脸猫发布了新的文献求助10
1秒前
xW12123完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
搜集达人应助luogan采纳,获得10
3秒前
Owen应助秋星人采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
散歌小调发布了新的文献求助20
4秒前
4秒前
4秒前
怡然的芯发布了新的文献求助10
4秒前
研友_n0gowL发布了新的文献求助10
4秒前
nimo发布了新的文献求助10
4秒前
哭泣战斗机应助赵玉珊采纳,获得10
5秒前
shuaibijiang发布了新的文献求助10
6秒前
cndxh发布了新的文献求助10
7秒前
爆米花应助cc采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助30
7秒前
8秒前
昔年发布了新的文献求助10
8秒前
云宝发布了新的文献求助10
8秒前
河畔发布了新的文献求助10
8秒前
9秒前
WTT发布了新的文献求助10
9秒前
10秒前
10秒前
xmj完成签到,获得积分10
10秒前
小二郎应助123采纳,获得10
10秒前
小灰灰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035