亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
飞快的孱发布了新的文献求助10
6秒前
8秒前
黑摄会阿Fay完成签到,获得积分10
8秒前
GingerF应助Ken采纳,获得50
9秒前
呆萌初南完成签到 ,获得积分10
11秒前
14秒前
小二郎应助Aleksibob采纳,获得30
15秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
15秒前
17秒前
GavinYi完成签到,获得积分10
18秒前
小马甲应助琪琪采纳,获得10
19秒前
luyajie发布了新的文献求助10
20秒前
20秒前
21秒前
舒心谷雪完成签到 ,获得积分10
23秒前
小二郎应助刺猬采纳,获得10
23秒前
24秒前
Aleksibob完成签到,获得积分10
25秒前
SciGPT应助丰富的松鼠采纳,获得10
28秒前
喜悦宫苴完成签到,获得积分10
29秒前
29秒前
31秒前
乐乐应助Tracy采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
35秒前
英姑应助渡己。采纳,获得10
35秒前
烟花应助科研通管家采纳,获得50
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
归尘应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
归尘应助科研通管家采纳,获得10
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
Hello应助科研通管家采纳,获得10
35秒前
月子淇应助科研通管家采纳,获得10
35秒前
mingjing完成签到 ,获得积分10
37秒前
Chenzr完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314