Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
www完成签到,获得积分10
刚刚
666发布了新的文献求助10
1秒前
zhengke924发布了新的文献求助10
1秒前
oblivious完成签到,获得积分10
1秒前
Hello应助普鲁卡因采纳,获得10
2秒前
邹咕噜完成签到,获得积分10
2秒前
李爱国应助shichao采纳,获得10
2秒前
2秒前
Lv完成签到,获得积分10
2秒前
田様应助gaterina采纳,获得10
2秒前
2秒前
遇鲸还潮完成签到,获得积分10
3秒前
火星上的醉山完成签到,获得积分10
3秒前
4秒前
4秒前
彭于晏应助霸气的菠萝采纳,获得10
4秒前
黄宇航完成签到,获得积分10
5秒前
爆米花应助wwwww采纳,获得10
5秒前
hyr完成签到,获得积分20
5秒前
5秒前
5秒前
汤圆本圆完成签到,获得积分10
6秒前
粥粥发布了新的文献求助10
6秒前
6秒前
彭于晏应助Echo采纳,获得10
6秒前
代沁完成签到,获得积分10
6秒前
cony发布了新的文献求助10
6秒前
6秒前
刘凤莲完成签到,获得积分20
7秒前
7秒前
K先生发布了新的文献求助10
7秒前
三分糖去冰完成签到 ,获得积分10
7秒前
无极微光应助科研通管家采纳,获得20
8秒前
大个应助科研通管家采纳,获得10
8秒前
迃幵发布了新的文献求助10
8秒前
求助人员应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034