Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝富完成签到,获得积分10
刚刚
ericzhouxx完成签到,获得积分10
刚刚
doctor小陈完成签到,获得积分10
1秒前
倩倩发布了新的文献求助10
3秒前
受伤鸡发布了新的文献求助10
4秒前
坚果完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
jesmblaq发布了新的文献求助10
5秒前
AAngelica完成签到,获得积分10
5秒前
ElviraHuang完成签到 ,获得积分10
7秒前
7秒前
李昕123发布了新的文献求助10
9秒前
9秒前
10秒前
Canyon完成签到,获得积分10
11秒前
刘l完成签到,获得积分10
11秒前
9699完成签到,获得积分20
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
破碎时间完成签到 ,获得积分10
13秒前
13秒前
13秒前
orixero应助忐忑的不可采纳,获得10
14秒前
科研通AI2S应助zhouyan采纳,获得10
14秒前
15秒前
蔡勇强发布了新的文献求助10
15秒前
小虫虫完成签到,获得积分10
15秒前
饼饼大王完成签到,获得积分10
15秒前
13013523252完成签到,获得积分10
15秒前
17秒前
hy发布了新的文献求助10
17秒前
科研通AI6应助tph采纳,获得10
18秒前
jesmblaq完成签到,获得积分10
19秒前
文静的夜阑完成签到,获得积分20
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
苹果有毒发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812