Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分10
1秒前
小蜻蜓应助五六七采纳,获得10
1秒前
Criminology34应助五六七采纳,获得10
1秒前
1秒前
斯文败类应助pray采纳,获得10
1秒前
2秒前
2秒前
科研通AI6应助研友_汪老头采纳,获得10
3秒前
4秒前
嗨嗨害发布了新的文献求助10
5秒前
NexusExplorer应助yiheng采纳,获得10
5秒前
yxy发布了新的文献求助10
5秒前
yxy发布了新的文献求助10
5秒前
yxy发布了新的文献求助10
5秒前
儒雅谷芹完成签到,获得积分10
5秒前
xh发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
bkagyin应助哈哈哈采纳,获得10
6秒前
徐志伟发布了新的文献求助10
6秒前
羊泥蝶发布了新的文献求助10
6秒前
7秒前
1111完成签到,获得积分10
7秒前
huatinxu完成签到,获得积分10
7秒前
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
米奇妙妙吴完成签到,获得积分10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
aaroncy完成签到,获得积分10
9秒前
feb发布了新的文献求助10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
Nan发布了新的文献求助10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
无辜的银耳汤完成签到,获得积分10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259826
求助须知:如何正确求助?哪些是违规求助? 4421346
关于积分的说明 13762778
捐赠科研通 4295329
什么是DOI,文献DOI怎么找? 2356838
邀请新用户注册赠送积分活动 1353198
关于科研通互助平台的介绍 1314374