Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

直肠 卷积神经网络 近距离放射治疗 计算机科学 深度学习 放射治疗 放射治疗计划 人工智能 医学 放射科 外科
作者
Xin Zhen,Jiawei Chen,Zichun Zhong,Brian Hrycushko,Linghong Zhou,Steve Jiang,Kevin Albuquerque,Xuejun Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (21): 8246-8263 被引量:177
标识
DOI:10.1088/1361-6560/aa8d09
摘要

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuanQiBB发布了新的文献求助10
刚刚
黑大帅发布了新的文献求助10
1秒前
一一完成签到,获得积分10
1秒前
disjustar应助Gavin采纳,获得50
2秒前
Wind0240完成签到,获得积分10
3秒前
Stting发布了新的文献求助10
3秒前
3秒前
3秒前
DDDD发布了新的文献求助10
3秒前
科研小菜鸡完成签到,获得积分10
4秒前
海盐完成签到,获得积分10
4秒前
4秒前
4秒前
咔咔完成签到,获得积分10
4秒前
miqilin发布了新的文献求助10
4秒前
科研通AI2S应助星辉斑斓采纳,获得10
5秒前
wanci应助YuanQiBB采纳,获得10
5秒前
包容的凛完成签到,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
曾经的寇完成签到 ,获得积分10
6秒前
星辰大海应助打小老虎采纳,获得10
6秒前
nffl完成签到,获得积分10
6秒前
7秒前
7秒前
zstyry9998完成签到,获得积分10
7秒前
jiabu发布了新的文献求助10
7秒前
NexusExplorer应助黑大帅采纳,获得10
7秒前
pxwhhh完成签到,获得积分10
8秒前
木光完成签到,获得积分10
8秒前
黄诺完成签到 ,获得积分10
8秒前
李钢完成签到 ,获得积分10
9秒前
徐志豪发布了新的文献求助10
9秒前
喜羊羊完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
聪明绝顶完成签到,获得积分10
11秒前
Steph发布了新的文献求助10
12秒前
12秒前
田様应助风带走黎明采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494