A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems

人工智能 机器学习 计算机科学 Boosting(机器学习) 朴素贝叶斯分类器 线性判别分析 进化算法 支持向量机 阿达布思 算法 决策树 统计分类 模式识别(心理学)
作者
Farajollah Tahernezhad-Javazm,Vahid Azimirad,Maryam Shoaran
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (2): 021007-021007 被引量:38
标识
DOI:10.1088/1741-2552/aa8063
摘要

Objective. Considering the importance and the near-future development of noninvasive brain–machine interface (BMI) systems, this paper presents a comprehensive theoretical–experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djbj2022发布了新的文献求助10
1秒前
1秒前
wifi发布了新的文献求助10
1秒前
满意的天完成签到,获得积分10
1秒前
852应助跳跃的大楚采纳,获得10
3秒前
4秒前
顺风顺水顺科研完成签到 ,获得积分10
4秒前
小伊001完成签到,获得积分10
5秒前
Aning完成签到,获得积分10
6秒前
执着烧鹅发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
肥牛芋泥泥完成签到,获得积分10
10秒前
10秒前
顾矜应助勤恳的语蝶采纳,获得10
11秒前
共享精神应助着急的蜗牛采纳,获得10
12秒前
纯粹完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
15秒前
混沌武士完成签到 ,获得积分10
15秒前
001完成签到,获得积分10
16秒前
李健应助dream采纳,获得10
17秒前
情怀应助快乐的紫寒采纳,获得10
17秒前
kmzzy完成签到 ,获得积分10
17秒前
Moyanmisheng发布了新的文献求助10
18秒前
20秒前
巴拉拉完成签到,获得积分10
22秒前
李大侠完成签到,获得积分10
22秒前
陈老太完成签到 ,获得积分10
23秒前
沉默小笼包完成签到 ,获得积分10
24秒前
楚乐倩发布了新的文献求助10
25秒前
CipherSage应助ocean12138采纳,获得10
25秒前
Moyanmisheng完成签到,获得积分10
25秒前
狂奔的蜗牛完成签到,获得积分10
25秒前
咿呀完成签到,获得积分10
25秒前
26秒前
慕青应助meng采纳,获得10
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073477
求助须知:如何正确求助?哪些是违规求助? 4293605
关于积分的说明 13378934
捐赠科研通 4114986
什么是DOI,文献DOI怎么找? 2253333
邀请新用户注册赠送积分活动 1258119
关于科研通互助平台的介绍 1191028