已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems

人工智能 机器学习 计算机科学 Boosting(机器学习) 朴素贝叶斯分类器 线性判别分析 进化算法 支持向量机 阿达布思 算法 决策树 统计分类 模式识别(心理学)
作者
Farajollah Tahernezhad-Javazm,Vahid Azimirad,Maryam Shoaran
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (2): 021007-021007 被引量:38
标识
DOI:10.1088/1741-2552/aa8063
摘要

Objective. Considering the importance and the near-future development of noninvasive brain–machine interface (BMI) systems, this paper presents a comprehensive theoretical–experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助djfnuv采纳,获得10
3秒前
明明完成签到 ,获得积分10
3秒前
王子关注了科研通微信公众号
5秒前
池haojie发布了新的文献求助10
5秒前
hilda发布了新的文献求助10
5秒前
6秒前
王cc发布了新的文献求助10
6秒前
陈晨发布了新的文献求助10
9秒前
11秒前
拾叁完成签到 ,获得积分10
13秒前
FashionBoy应助强痛定采纳,获得10
14秒前
单薄紫菜完成签到 ,获得积分10
15秒前
王cc完成签到,获得积分20
16秒前
沉静的时光完成签到 ,获得积分10
16秒前
Turley发布了新的文献求助10
19秒前
22秒前
无限的妙芙完成签到 ,获得积分10
24秒前
洁净如音完成签到,获得积分10
27秒前
hilda完成签到,获得积分10
27秒前
Turley完成签到,获得积分10
28秒前
追寻的机器猫完成签到 ,获得积分10
30秒前
勤劳觅山完成签到,获得积分20
31秒前
32秒前
池haojie发布了新的文献求助10
35秒前
RJ发布了新的文献求助10
38秒前
国家一级啃大瓜表演艺术家完成签到,获得积分10
39秒前
斯文败类应助RJ采纳,获得10
48秒前
小二郎应助宋宋采纳,获得10
50秒前
池haojie完成签到,获得积分10
50秒前
bkagyin应助111231采纳,获得10
50秒前
sulin完成签到 ,获得积分10
53秒前
55秒前
一年发十篇完成签到,获得积分10
57秒前
57秒前
无喱酱发布了新的文献求助20
58秒前
59秒前
1分钟前
STEAM发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602961
求助须知:如何正确求助?哪些是违规求助? 4688164
关于积分的说明 14852569
捐赠科研通 4686724
什么是DOI,文献DOI怎么找? 2540360
邀请新用户注册赠送积分活动 1506947
关于科研通互助平台的介绍 1471495