A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems

人工智能 机器学习 计算机科学 Boosting(机器学习) 朴素贝叶斯分类器 线性判别分析 进化算法 支持向量机 阿达布思 算法 决策树 统计分类 模式识别(心理学)
作者
Farajollah Tahernezhad-Javazm,Vahid Azimirad,Maryam Shoaran
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (2): 021007-021007 被引量:38
标识
DOI:10.1088/1741-2552/aa8063
摘要

Objective. Considering the importance and the near-future development of noninvasive brain–machine interface (BMI) systems, this paper presents a comprehensive theoretical–experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助淡定落雁采纳,获得10
2秒前
Nothing应助安宇采纳,获得10
2秒前
如意枫叶发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
lily发布了新的文献求助10
3秒前
五虎完成签到,获得积分10
3秒前
牟有一甲店完成签到,获得积分10
5秒前
6秒前
瘦瘦的枫叶完成签到 ,获得积分10
7秒前
7秒前
英俊白莲发布了新的文献求助10
7秒前
星辰大海应助稳重的安萱采纳,获得10
9秒前
啾啾啾发布了新的文献求助10
9秒前
12秒前
14秒前
Xylah_Rebecca完成签到,获得积分10
14秒前
peanut完成签到,获得积分10
15秒前
椰汁糕发布了新的文献求助10
15秒前
ZQP完成签到,获得积分10
16秒前
17秒前
xu完成签到,获得积分10
17秒前
17秒前
冬虫夏草完成签到,获得积分10
18秒前
CodeCraft应助稳重的安萱采纳,获得10
18秒前
淡定落雁发布了新的文献求助10
19秒前
Xylah_Rebecca发布了新的文献求助10
19秒前
游元稔完成签到 ,获得积分10
20秒前
FoxLY完成签到,获得积分10
22秒前
火山蜗牛发布了新的文献求助10
22秒前
SDNUDRUG发布了新的文献求助10
23秒前
纸张猫猫完成签到,获得积分10
23秒前
碑刻发布了新的文献求助10
23秒前
游元稔关注了科研通微信公众号
24秒前
Anita完成签到,获得积分10
25秒前
CyrusSo524应助shuya采纳,获得10
25秒前
Z17应助shuya采纳,获得10
25秒前
yehR完成签到,获得积分20
26秒前
啾啾啾发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176