A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems

人工智能 机器学习 计算机科学 Boosting(机器学习) 朴素贝叶斯分类器 线性判别分析 进化算法 支持向量机 阿达布思 算法 决策树 统计分类 模式识别(心理学)
作者
Farajollah Tahernezhad-Javazm,Vahid Azimirad,Maryam Shoaran
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (2): 021007-021007 被引量:38
标识
DOI:10.1088/1741-2552/aa8063
摘要

Objective. Considering the importance and the near-future development of noninvasive brain–machine interface (BMI) systems, this paper presents a comprehensive theoretical–experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条馒头完成签到,获得积分10
刚刚
爱听歌盼海完成签到 ,获得积分10
刚刚
micaixing2006完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
文静鸡翅完成签到 ,获得积分10
2秒前
2秒前
jiangjiang完成签到,获得积分10
3秒前
keyanyan完成签到,获得积分10
4秒前
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
lemon应助科研通管家采纳,获得10
5秒前
淡然的莫茗完成签到 ,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
HDJ应助科研通管家采纳,获得10
5秒前
niNe3YUE应助科研通管家采纳,获得10
5秒前
南风喜欢完成签到,获得积分10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
BowieHuang应助zhang采纳,获得10
6秒前
6秒前
cui完成签到,获得积分10
7秒前
shallow完成签到,获得积分10
8秒前
骑着蚂蚁追大象完成签到,获得积分10
9秒前
归海一刀完成签到,获得积分20
10秒前
小杨完成签到,获得积分10
11秒前
karL完成签到,获得积分10
11秒前
Dryad完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
thinking完成签到,获得积分10
13秒前
吉吉国王完成签到,获得积分10
14秒前
王冰完成签到,获得积分10
15秒前
风笛完成签到,获得积分10
15秒前
林韦完成签到,获得积分10
15秒前
独特乘风完成签到,获得积分10
16秒前
孤独音响完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922