A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems

人工智能 机器学习 计算机科学 Boosting(机器学习) 朴素贝叶斯分类器 线性判别分析 进化算法 支持向量机 阿达布思 算法 决策树 统计分类 模式识别(心理学)
作者
Farajollah Tahernezhad-Javazm,Vahid Azimirad,Maryam Shoaran
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (2): 021007-021007 被引量:38
标识
DOI:10.1088/1741-2552/aa8063
摘要

Objective. Considering the importance and the near-future development of noninvasive brain–machine interface (BMI) systems, this paper presents a comprehensive theoretical–experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Patrickkkk发布了新的文献求助10
刚刚
iii完成签到 ,获得积分10
1秒前
LL完成签到,获得积分10
2秒前
费雪卉发布了新的文献求助10
3秒前
3秒前
4秒前
ll发布了新的文献求助10
4秒前
喻白玉发布了新的文献求助20
5秒前
迷人幻波发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
6秒前
呼噜发布了新的文献求助10
6秒前
6秒前
CipherSage应助123采纳,获得10
6秒前
8秒前
8秒前
8秒前
东拉西扯发布了新的文献求助10
10秒前
大模型应助xxx采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
落后从阳发布了新的文献求助10
12秒前
zlx完成签到 ,获得积分10
12秒前
科科研研发布了新的文献求助10
13秒前
中草药完成签到,获得积分10
14秒前
小布可嘁完成签到 ,获得积分10
14秒前
马敬丽发布了新的文献求助10
14秒前
芝士栗子完成签到 ,获得积分10
14秒前
山大王yoyo完成签到,获得积分10
14秒前
yq完成签到 ,获得积分10
15秒前
喻白玉完成签到,获得积分10
15秒前
Xie发布了新的文献求助200
15秒前
苦逼完成签到,获得积分10
16秒前
怕黑道消完成签到 ,获得积分10
16秒前
仁爱发卡发布了新的文献求助10
16秒前
xxx发布了新的文献求助10
17秒前
希望天下0贩的0应助可乐采纳,获得10
18秒前
科研小白应助彭先生采纳,获得10
19秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122590
求助须知:如何正确求助?哪些是违规求助? 2773067
关于积分的说明 7716206
捐赠科研通 2428547
什么是DOI,文献DOI怎么找? 1289868
科研通“疑难数据库(出版商)”最低求助积分说明 621598
版权声明 600185