Macrophage Migration Inhibitory Factor -173 G/C Polymorphism: A Global Meta-Analysis across the Disease Spectrum

巨噬细胞移动抑制因子 单核苷酸多态性 SNP公司 荟萃分析 内科学 病理生理学 疾病 免疫学 关节炎 医学 生物 胃肠病学 细胞因子 基因 遗传学 基因型
作者
Oscar Illescas,Juan Carlos Gómez-Verján,Lizbeth García‐Velázquez,Tzipe Govezensky,Miriam Rodríguez‐Sosa
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:9 被引量:31
标识
DOI:10.3389/fgene.2018.00055
摘要

Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58-0.93], P-val<0.01; OR: 0.81 [0.74-0.89], P-val<0.0001; and OR: 0.81 [0.76-0.87], P-val<0.0001, respectively) and the recessive models (OR: 0.74 [0.57-.095], P-val<0.01; OR: 0.66 [0.48-0.92], P-val<0.0154; and OR: 0.70 [0.60-0.82], P-val<0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69-0.84], Pval: <0.0001; OR: 0.77 [0.72-0.83], Pval: <0.0001; OR: 0.61 [0.44-0.83], Pval: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77-0.94], Pval: <0.0001; OR: 0.80 [0.75-0.86], Pval: <0.0001; OR: 0.73 [0.63-0.85], Pval: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF -173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子云完成签到,获得积分10
1秒前
PlanetaryLayer完成签到,获得积分10
1秒前
吃猫的鱼发布了新的文献求助10
2秒前
达达发布了新的文献求助10
4秒前
香蕉觅云应助健忘的曼卉采纳,获得10
4秒前
nice糊涂慧完成签到,获得积分10
5秒前
CipherSage应助6633采纳,获得10
7秒前
实验好难应助成就随阴采纳,获得10
8秒前
9秒前
安详砖家完成签到 ,获得积分10
12秒前
14秒前
16秒前
达达完成签到 ,获得积分20
17秒前
18秒前
罗拉发布了新的文献求助10
20秒前
quantumdot发布了新的文献求助10
20秒前
醉熏的天薇完成签到,获得积分10
20秒前
geyunjie完成签到,获得积分10
22秒前
23秒前
niu应助zzz采纳,获得10
23秒前
JQKing发布了新的文献求助10
24秒前
25秒前
可达鸭完成签到,获得积分20
25秒前
25秒前
walden发布了新的文献求助10
27秒前
若尘应助罗拉采纳,获得10
27秒前
27秒前
777发布了新的文献求助10
30秒前
31秒前
可达鸭发布了新的文献求助30
32秒前
www发布了新的文献求助10
32秒前
ding应助JQKing采纳,获得10
34秒前
35秒前
geyunjie发布了新的文献求助10
36秒前
36秒前
无花果应助777采纳,获得10
37秒前
卷卷完成签到,获得积分10
40秒前
灰色铅笔发布了新的文献求助10
41秒前
蜡笔小新完成签到 ,获得积分10
43秒前
今后应助陈曦采纳,获得10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931