电催化剂
材料科学
电化学
纳米技术
电极
物理化学
化学
作者
Hou Wang,Yan Wu,Xingzhong Yuan,Guangming Zeng,Jin Zhou,Xin Wang,Jia Wei Chew
标识
DOI:10.1002/adma.201704561
摘要
MXene, an important and increasingly popular category of postgraphene 2D nanomaterials, has been rigorously investigated since early 2011 because of advantages including flexible tunability in element composition, hydrophobicity, metallic nature, unique in-plane anisotropic structure, high charge-carrier mobility, tunable band gap, and favorable optical and mechanical properties. To fully exploit these potentials and further expand beyond the existing boundaries, novel functional nanostructures spanning monolayer, multilayer, nanoparticles, and composites have been developed by means of intercalation, delamination, functionalization, hybridization, among others. Undeniably, the cutting-edge developments and applications of clay-inspired 2D MXene platform as electrochemical electrode or photo-electrocatalyst have conferred superior performance and have made significant impact in the field of energy and advanced catalysis. This review provides an overview of the fundamental properties and synthesis routes of pure MXene, functionalized MXene and their hybrids, highlights the state-of-the-art progresses of MXene-based applications with respect to supercapacitors, batteries, electrocatalysis and photocatalysis, and presents the challenges and prospects in the burgeoning field.
科研通智能强力驱动
Strongly Powered by AbleSci AI