The pressure leaching kinetics of mechanically activated sphalerite was investigated in this work. X-ray diffraction and scanning electron microscopy were used to characterise the influences of crystalline structure and morphology, respectively. A laser particle size analyser and specific surface area tester were used to determine the particle size and specific surface area, respectively. Compared to the non-activated sample, the activated samples demonstrated distinct physicochemical properties with higher reaction efficiencies and increased Zn recovery ratios. The activation energy of sphalerite decreased from 69.96 to 45.91, 45.11, and 44.44 kJ mol−1 as the activation time increased from 0 to 30, 60, and 120 min, respectively. The reaction orders for the H2SO4 solutions of the sphalerite samples activated for 0, 30, 60, and 120 min were 1.832, 1.247, 1.214, and 1.085, respectively, which indicated that the dependency of the sphalerite leaching process on H2SO4 could be reduced by means of mechanical activation.