多硫化物
聚电解质
阴极
材料科学
电极
聚合物
电池(电)
硫黄
离子
介孔材料
锂硫电池
锂(药物)
纳米技术
阳离子聚合
化学工程
化学
电解质
高分子化学
催化作用
有机化学
复合材料
功率(物理)
冶金
物理化学
内分泌学
工程类
物理
医学
量子力学
作者
Longjun Li,Tod A. Pascal,Justin G. Connell,Frank Y. Fan,Stephen M. Meckler,Lin Ma,Yet‐Ming Chiang,David Prendergast,Brett A. Helms
标识
DOI:10.1038/s41467-017-02410-6
摘要
Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Although it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. Here, we reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network of mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes allow cells to be operated for >100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm
科研通智能强力驱动
Strongly Powered by AbleSci AI