Unsupervised seismic facies analysis via deep convolutional autoencoders

模式识别(心理学) 地质学 聚类分析 自编码 地震道 人工智能 卷积神经网络 计算机科学 特征提取 深度学习 小波 古生物学 构造盆地
作者
Feng Qian,Miao Yin,Xiao-Yang Liu,Yaojun Wang,Chao Lu,Guangmin Hu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:83 (3): A39-A43 被引量:118
标识
DOI:10.1190/geo2017-0524.1
摘要

One of the most important goals of seismic stratigraphy studies is to interpret the elements of the seismic facies with respect to the geologic environment. Prestack seismic data carry rich information that can help us get higher resolution and more accurate facies maps. Therefore, it is promising to use prestack seismic data for the seismic facies recognition task. However, because each identified object changes from the poststack trace vectors to a prestack trace matrix, effective feature extraction becomes more challenging. We have developed a novel data-driven offset-temporal feature extraction approach using the deep convolutional autoencoder (DCAE). As an unsupervised deep learning method, DCAE learns nonlinear, discriminant, and invariant features from unlabeled data. Then, seismic facies analysis can be accomplished through the use of conventional classification or clustering techniques (e.g., K-means or self-organizing maps). Using a physical model and field prestack seismic surveys, we comprehensively determine the effectiveness of our scheme. Our results indicate that DCAE provides a much higher resolution than the conventional methods and offers the potential to significantly highlight stratigraphic and depositional information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助量子星尘采纳,获得30
1秒前
1秒前
星辰大海应助量子星尘采纳,获得10
2秒前
辞清完成签到 ,获得积分10
2秒前
wanci应助量子星尘采纳,获得10
3秒前
酷酷涫完成签到 ,获得积分0
3秒前
wanci应助量子星尘采纳,获得10
4秒前
大渡河完成签到 ,获得积分10
4秒前
深情安青应助量子星尘采纳,获得10
4秒前
帅气的藏鸟完成签到,获得积分10
4秒前
酷波er应助量子星尘采纳,获得10
5秒前
wwrjj发布了新的文献求助10
7秒前
ceeray23发布了新的文献求助20
7秒前
janejane完成签到 ,获得积分10
8秒前
饱满的棒棒糖完成签到 ,获得积分10
9秒前
勤劳宛菡完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助30
10秒前
啊哈啊哈额完成签到,获得积分10
11秒前
ZHZ完成签到,获得积分10
11秒前
八八九九九1完成签到,获得积分10
11秒前
没用的三轮完成签到,获得积分10
12秒前
13秒前
优雅的千雁完成签到,获得积分10
15秒前
mayberichard完成签到,获得积分10
16秒前
叶子完成签到 ,获得积分10
17秒前
janejane发布了新的文献求助10
17秒前
dajiejie完成签到 ,获得积分10
18秒前
拼搏一曲完成签到 ,获得积分10
21秒前
她的城完成签到,获得积分0
28秒前
吕小布完成签到,获得积分10
29秒前
Rainielove0215完成签到,获得积分0
30秒前
跳跃的白云完成签到 ,获得积分10
30秒前
帅气的马里奥完成签到 ,获得积分10
31秒前
灿华完成签到 ,获得积分10
31秒前
无为完成签到 ,获得积分10
32秒前
Rainielove0215发布了新的文献求助200
33秒前
完美世界应助hahaha采纳,获得10
37秒前
正方形圆完成签到,获得积分20
38秒前
jiangqin123完成签到 ,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008786
求助须知:如何正确求助?哪些是违规求助? 3548464
关于积分的说明 11298867
捐赠科研通 3283080
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220