Tunnelling and its effects on piles and piled structures

离心机 岩土工程 基础(证据) 流离失所(心理学) 工程类 量子隧道 土-结构相互作用 变形(气象学) 结算(财务) 结构工程 上部结构 发掘 地质学 土木工程 有限元法 计算机科学 法学 付款 核物理学 万维网 心理学 物理 心理治疗师 海洋学 光电子学 政治学
作者
Andrea Franza
链接
摘要

Current needs for infrastructure and services in urban areas often require the construction of tunnels that may affect existing surface and buried structures. In general, the construction of new tunnels in the proximity of deep foundations raises concerns related to pile failure and associated structural damage (in both the superstructure and the foundation). Despite its practical importance, few studies have investigated the global tunnel-pile-structure interaction (TPSI) and, thus, engineers generally compensate for the lack of understanding with an overly conservative design approach. To provide insights into the interaction mechanisms of TPSI, this research used geotechnical centrifuge testing as the main investigation method to acquire data related to both greenfield tunnelling in sands and tunnel excavations beneath piles and piled buildings. In particular, a novel method was developed to study TPSI problems through the real-time coupling of numerical and centrifuge modelling, enhancing centrifuge modelling capabilities. Furthermore, empirical and closed-form solutions were used to study the tunnelling-induced displacement fields and simplified elastic analyses were used to provide insights into the global TPSI mechanisms. Results from the greenfield tests illustrate that ground movement prediction in sands is very complex because of soil arching effects and changes that occur as tunnels transition from relatively shallow to deep depths, resulting in highly non-linear displacement mechanisms. Results also illustrate the correlation between vertical and horizontal displacement mechanisms. In particular, the influence of soil relative density and volume loss on deformation patterns is highly dependent on the tunnel relative depth. To provide simple tools for engineering practice, empirical and closed-form solutions are proposed. Predicted ground movements provide sufficient accuracy for preliminary assessments, though limitations of these methods should be considered. The centrifuge tests on TPSI provide experimental evidence that tunnelling-induced pile displacements are affected by [i] pile installation method (displacement versus non-displacement piles), which affects the pre-tunnelling soil state and the distribution of loads between pile shaft and base, [ii] initial safety factor of the pile foundation, which is related to pile bearing capacity and superstructure self-weight, and [iii] superstructure stiffness and configuration, which results in pile load redistribution while minimising structural distortions. In addition, results show that potential for pile failure is a critical aspect for piles with relatively low initial safety factors and that pile failure may be prevented by a limited relative reduction in the pile load due to the superstructure. Finally, the importance of superstructure stiffness and self-weight on tunnelling-induced structural distortions is confirmed. Piled buildings respond critically to tunnelling beneath the pile tip depth in terms of flexural deformations. In general, it is shown that [iv] piles increase structural distortions compared to shallow foundations and that [v] the superstructure stiffness and self-weight decrease and increase the superstructure distortions resulting from tunnelling, respectively. Results are also evaluated within the modification factor approach; parametric analyses of elastic soil-pile-structure interaction are used to develop simple design charts that can be used to estimate horizontal strains and deflection ratio modification factors based on newly defined relative axial and bending stiffness parameters. The envelopes compare well with deflection ratio modification factors measured from centrifuge tests. Further research is needed to include the effects of soil plasticity, building self-weight, superstructure configuration and tunnel-structure eccentricity in these design charts. This dissertation highlights the improvements in the design of underground constructions that can be achieved by combining ground and structural engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna_aaa应助yang135采纳,获得10
2秒前
忧郁小刺猬完成签到,获得积分10
2秒前
5秒前
LIBINWANG完成签到,获得积分10
6秒前
7秒前
老虎完成签到,获得积分10
8秒前
苹果夜梦完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
NexusExplorer应助不安冰棍采纳,获得10
11秒前
竹本完成签到 ,获得积分10
12秒前
Dio完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
田様应助MGzsss采纳,获得10
15秒前
15秒前
思源应助你好采纳,获得10
15秒前
15秒前
16秒前
Daiys完成签到,获得积分10
17秒前
蓝天应助彩虹捕手采纳,获得10
18秒前
xiaofeidiao完成签到,获得积分10
18秒前
尔蝶完成签到 ,获得积分10
19秒前
ZZL发布了新的文献求助10
19秒前
搬砖发布了新的文献求助10
20秒前
21秒前
嗯哼完成签到 ,获得积分10
22秒前
Akim应助涯123采纳,获得10
23秒前
23秒前
高贵秋柳发布了新的文献求助10
24秒前
25秒前
英勇的若灵完成签到 ,获得积分10
25秒前
25秒前
专注雁卉发布了新的文献求助10
26秒前
MGzsss发布了新的文献求助10
26秒前
28秒前
薏_发布了新的文献求助10
28秒前
yznfly应助Tail采纳,获得20
28秒前
你好发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617