Zero-dimensional carbon dots (0D C-dots) and one-dimensional sulfide cadmium nanowires (1D CdS NWs) were prepared by microwave and solvothermal methods, respectively. A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C-dots (C-dots/CdS NWs) were synthesized using chemical deposition methods. The mass fraction of C-dots to CdS NWs in these photocatalysts was varied. The photocatalysts were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy. Their photocatalytic performance for the spitting of water and the degradation of rhodamine B (RhB) under visible light irradiation were investigated. The photocatalytic performance of the C-dots/CdS NWs was enhanced when compared with that of the pure CdS NWs, with the 0.4% C-dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB. The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C-dots and CdS NWs. This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes. 0D/1D heterojunction of C-dots/CdS NWs was prepared to investigate the enhanced photocatalytic performance under visible light irradiation. The heterojunction establishment can effectively improve the electronic transmission capacity, and promote the separation efficiency of photogenerated carriers of C-dots/CdS NWs.